Linearized model Fokker-Planck collision operators for gyrokinetic simulations. II. Numerical implementation and tests

被引:82
作者
Barnes, M. [1 ,2 ]
Abel, I. G. [3 ,4 ]
Dorland, W. [1 ,2 ]
Ernst, D. R. [5 ]
Hammett, G. W. [6 ]
Ricci, P. [7 ]
Rogers, B. N. [8 ]
Schekochihin, A. A. [3 ]
Tatsuno, T. [1 ,2 ]
机构
[1] Univ Maryland, Dept Phys, IREAP, College Pk, MD 20742 USA
[2] Univ Maryland, CSCAMM, College Pk, MD 20742 USA
[3] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, Plasma Phys Grp, London SW7 2AZ, England
[4] UKAEA Euratom Fus Assoc, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[5] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[6] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[7] Ecole Polytech Fed Lausanne, Assoc EURATOM Confederat Suisse, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland
[8] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA
基金
英国工程与自然科学研究理事会;
关键词
diffusion; plasma collision processes; plasma kinetic theory; plasma simulation; ASTROPHYSICAL GYROKINETICS; NONLINEAR EVOLUTION; INTERCHANGE MODES; TRANSPORT; TURBULENCE; EQUATIONS; FIELD; DRIFT; STABILITY;
D O I
10.1063/1.3155085
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A set of key properties for an ideal dissipation scheme in gyrokinetic simulations is proposed, and implementation of a model collision operator satisfying these properties is described. This operator is based on the exact linearized test-particle collision operator, with approximations to the field-particle terms that preserve conservation laws and an H-theorem. It includes energy diffusion, pitch-angle scattering, and finite Larmor radius effects corresponding to classical (real-space) diffusion. The numerical implementation in the continuum gyrokinetic code GS2 [Kotschenreuther , Comput. Phys. Comm. 88, 128 (1995)] is fully implicit and guarantees exact satisfaction of conservation properties. Numerical results are presented showing that the correct physics is captured over the entire range of collisionalities, from the collisionless to the strongly collisional regimes, without recourse to artificial dissipation.
引用
收藏
页数:13
相关论文
共 51 条
  • [1] Linearized model Fokker-Planck collision operators for gyrokinetic simulations. I. Theory
    Abel, I. G.
    Barnes, M.
    Cowley, S. C.
    Dorland, W.
    Schekochihin, A. A.
    [J]. PHYSICS OF PLASMAS, 2008, 15 (12)
  • [2] [Anonymous], 1999, Texts in Applied Mathematics
  • [3] Micro-tearing modes in the mega ampere spherical tokamak
    Applegate, D. J.
    Roach, C. M.
    Connor, J. W.
    Cowley, S. C.
    Dorland, W.
    Hastie, J.
    Joiner, N.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2007, 49 (08) : 1113 - 1128
  • [4] COLLISIONLESS DAMPING OF HYDROMAGNETIC WAVES
    BARNES, A
    [J]. PHYSICS OF FLUIDS, 1966, 9 (08) : 1483 - &
  • [5] BARNES M, PHYS PLASMAS UNPUB
  • [6] ION THERMAL-CONDUCTIVITY FOR A PURE TOKAMAK PLASMA
    BOLTON, C
    WARE, AA
    [J]. PHYSICS OF FLUIDS, 1983, 26 (02) : 459 - 467
  • [7] Velocity-space resolution, entropy production, and upwind dissipation in Eulerian gyrokinetic simulations
    Candy, J
    Waltz, RE
    [J]. PHYSICS OF PLASMAS, 2006, 13 (03)
  • [8] Relevance of the parallel nonlinearity in gyrokinetic simulations of tokamak plasmas
    Candy, J.
    Waltz, R. E.
    Parker, S. E.
    Chen, Y.
    [J]. PHYSICS OF PLASMAS, 2006, 13 (07)
  • [9] An Eulerian gyrokinetic-Maxwell solver
    Candy, J
    Waltz, RE
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 186 (02) : 545 - 581
  • [10] LINEARIZED GYRO-KINETIC EQUATION WITH COLLISIONS
    CATTO, PJ
    TSANG, KT
    [J]. PHYSICS OF FLUIDS, 1977, 20 (03) : 396 - 401