The generalized hyperstability of general linear equations in quasi-Banach spaces

被引:23
作者
Nguyen Van Dung [1 ,2 ]
Vo Thi Le Hang [3 ,4 ]
机构
[1] Ton Duc Thang Univ, Nonlinear Anal Res Grp, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Dong Thap Univ, Journal Sci, Cao Lanh City, Dong Thap Provi, Vietnam
[4] Dong Thap Univ, Fac Math & Informat Technol Teacher Educ, Cao Lanh City, Dong Thap Provi, Vietnam
关键词
Fixed point; Quasi-Banach space; Hyperstability; General linear equation; CUBIC FUNCTIONAL-EQUATION; STABILITY;
D O I
10.1016/j.jmaa.2018.01.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the hyperstability for the general linear equation in the setting of quasi-Banach spaces. We first extend the fixed point result of Brzdek et al. [5, Theorem 1] in metric spaces to b-metric spaces, in particular to quasi-Banach spaces. Then we use this result to generalize the main results on the hyperstability for the general linear equation in Banach spaces to quasi-Banach spaces. We also show that we can not omit the assumption of completeness in 15, Theorem 1]. As a consequence, we conclude that we need more explanations to replace a normed space by its completion in the proofs of some results in the literature. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 147
页数:17
相关论文
共 50 条
[21]   Hyperstability of the General Linear Functional Equation in Non-Archimedean Banach Spaces [J].
Shujauddin Shuja ;
Ahmad F. Embong ;
Nor M. M. Ali .
p-Adic Numbers, Ultrametric Analysis and Applications, 2024, 16 :70-81
[22]   On the Hyers-Ulam-Rassias stability of functional equations in quasi-Banach spaces [J].
Eskandani, G. Z. ;
Vaezi, H. ;
Moradlou, F. .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2009, 15 (D09) :1-15
[23]   Extrapolation of operators acting into quasi-Banach spaces [J].
Lykov, K. V. .
SBORNIK MATHEMATICS, 2016, 207 (01) :85-112
[24]   Quasi-Banach spaces of almost universal disposition [J].
Sanchez, Felix Cabello ;
Garbulinska-Wegrzyn, Joanna ;
Kubis, Wieslaw .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (03) :744-771
[25]   Solution to Kim-Rassias's question on stability of generalized Euler-Lagrange quadratic functional equations in quasi-Banach spaces [J].
Nguyen van Dung ;
Vo Thi Le Hang .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (05) :2709-2720
[26]   On generalized hyperstability of a general linear equation [J].
L. Aiemsomboon ;
W. Sintunavarat .
Acta Mathematica Hungarica, 2016, 149 :413-422
[27]   HYPERSTABILITY RESULTS FOR THE GENERAL LINEAR FUNCTIONAL EQUATION IN NON-ARCHIMEDEAN 2-BANACH SPACES [J].
Shuja, Shujauddin ;
Embong, Ahmad Fadillah ;
Ali, Nor Muhainiah Mohd .
JOURNAL OF QUALITY MEASUREMENT AND ANALYSIS, 2024, 20 (02) :35-48
[28]   Stability of Euler-Lagrange-Type Cubic Functional Equations in Quasi-Banach Spaces [J].
Thanyacharoen, Anurak ;
Sintunavarat, Wutiphol ;
Nguyen Van Dung .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (01) :251-266
[29]   Stability of Euler–Lagrange-Type Cubic Functional Equations in Quasi-Banach Spaces [J].
Anurak Thanyacharoen ;
Wutiphol Sintunavarat ;
Nguyen Van Dung .
Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 :251-266
[30]   Coupled fixed point results on quasi-Banach spaces with application to a system of integral equations [J].
Hussain, Nawab ;
Salimi, Peyman ;
Al-Mezel, Saleh .
FIXED POINT THEORY AND APPLICATIONS, 2013,