The generalized hyperstability of general linear equations in quasi-Banach spaces

被引:22
作者
Nguyen Van Dung [1 ,2 ]
Vo Thi Le Hang [3 ,4 ]
机构
[1] Ton Duc Thang Univ, Nonlinear Anal Res Grp, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[3] Dong Thap Univ, Journal Sci, Cao Lanh City, Dong Thap Provi, Vietnam
[4] Dong Thap Univ, Fac Math & Informat Technol Teacher Educ, Cao Lanh City, Dong Thap Provi, Vietnam
关键词
Fixed point; Quasi-Banach space; Hyperstability; General linear equation; CUBIC FUNCTIONAL-EQUATION; STABILITY;
D O I
10.1016/j.jmaa.2018.01.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the hyperstability for the general linear equation in the setting of quasi-Banach spaces. We first extend the fixed point result of Brzdek et al. [5, Theorem 1] in metric spaces to b-metric spaces, in particular to quasi-Banach spaces. Then we use this result to generalize the main results on the hyperstability for the general linear equation in Banach spaces to quasi-Banach spaces. We also show that we can not omit the assumption of completeness in 15, Theorem 1]. As a consequence, we conclude that we need more explanations to replace a normed space by its completion in the proofs of some results in the literature. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:131 / 147
页数:17
相关论文
共 20 条
[1]   A NOTE ON THE GENERALISED HYPERSTABILITY OF THE GENERAL LINEAR EQUATION [J].
Aiemsomboon, Laddawan ;
Sintunavarat, Wutiphol .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2017, 96 (02) :263-273
[2]  
Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]
[3]  
Bahyrycz A, 2016, B IRAN MATH SOC, V42, P959
[4]   Hyperstability of the Cauchy equation on restricted domains [J].
Brzdek, J. .
ACTA MATHEMATICA HUNGARICA, 2013, 141 (1-2) :58-67
[5]   Remarks on stability of some inhomogeneous functional equations [J].
Brzdek, Janusz .
AEQUATIONES MATHEMATICAE, 2015, 89 (01) :83-96
[6]   A fixed point approach to stability of functional equations [J].
Brzdek, Janusz ;
Chudziak, Jacek ;
Pales, Zsolt .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) :6728-6732
[7]  
Czerwik S., 1998, Atti Semin. Mat. Fis. Univ. Modena., V46, P263
[8]   A new type of approximation for the radical quintic functional equation in non-Archimedean (2, β)-Banach spaces [J].
El-Fassi, Iz-iddine .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) :322-335
[9]   Approximate solution of radical quartic functional equation related to additive mapping in 2-Banach spaces [J].
El-Fassi, Iz-Iddine .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) :2001-2013
[10]  
Gajda Z., 1991, Internat. J. Math. Math. Sci., V14, P431, DOI [10.1155/S016117129100056X, DOI 10.1155/S016117129100056X]