Delivery of vascular endothelial growth factor (VEGFC) via engineered exosomes improves lymphedema

被引:20
作者
Li, Bohan [1 ]
Yang, Jiantao [1 ]
Wang, Raoping [2 ]
Li, Jia [1 ]
Li, Xubo [1 ]
Zhou, Xiang [1 ]
Qiu, Shuai [1 ]
Weng, Ricong [1 ]
Wu, Zichao [1 ]
Tang, Chunyuan [2 ]
Li, Ping [1 ]
机构
[1] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Microsurg & Orthoped Trauma, 58 Zhongshan Er Rd, Guangzhou 510080, Peoples R China
[2] Sun Yat Sen Univ, Affiliated Hosp 1, Dept Nephrol, 58 Zhongshan Er Rd, Guangzhou 510080, Peoples R China
基金
中国国家自然科学基金;
关键词
Lymphedema; engineered exosomes; vascular endothelial growth factor (VEGFC); CD63; delivery system; MESENCHYMAL STEM-CELLS; IN-VITRO; MOUSE;
D O I
10.21037/atm-20-6605
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Lymphedema is a chronic disease results from impaired flow of the lymphatic system. Therefore, reconstruction of lymphatic system is crucial to treat limb lymphedema. Vascular endothelial growth factor (VEGFC) has been reported to be an important regulator involved in the growth and differentiation of lymphatic endothelial cells; however; the application of exosomes with VEGFC in the treatment of lymphedema has been rarely reported. Methods: From the membrane-based fusion technology, we constructed engineered exosomes that overexpress CD63-VEGFC fusion protein (CD63-VEGFC/exos). We examined the in vitro effects of CD63VEGFC/exos on the proliferation, migration, and tube formation of human dermal lymphatic endothelial cells (HDLECs) by MTT assay, migration assay, and tube formation assay, respectively. CD63-VEGFC/ exos were embedded in sodium alginate hydrogel and their effect on lymphedema was evaluated by a mouse model. Results: VEGFC could be successfully delivered to lymphatic endothelial cells via engineered CD63VEGFC/exos. Treatment with CD63-VEGFC/exos resulted in a significant increase in the proliferation, migration, and tube formation of lymphatic endothelial cells. Using CD63-VEGFC/egos in sodium alginate hydrogel enabled a sequenced release of exosomes and markedly improved lymphedema in a mouse model. Conclusions: Our findings supply a novel adipose tissue-derived stem cell (ADSC)-exo-based strategy that delivers target proteins to lymphatic endothelial cells and thus enhances the treatment of lymphedema.
引用
收藏
页数:11
相关论文
共 36 条
[1]   Human adipose-derived stem cells support lymphangiogenesis in vitro by secretion of lymphangiogenic factors [J].
Ahmadzadeh, Nima ;
Robering, Jan W. ;
Kengelbach-Weigand, Annika ;
Al-Abboodi, Majida ;
Beier, Justus P. ;
Horch, Raymund E. ;
Boos, Anja M. .
EXPERIMENTAL CELL RESEARCH, 2020, 388 (02)
[2]   Strategic design of extracellular vesicle drug delivery systems [J].
Armstrong, James P. K. ;
Stevens, Molly M. .
ADVANCED DRUG DELIVERY REVIEWS, 2018, 130 :12-16
[3]   Self-Assembled Human Adipose-Derived Stem Cell-Derived Extracellular Vesicle-Functionalized Biotin-Doped Polypyrrole Titanium with Long-Term Stability and Potential Osteoinductive Ability [J].
Chen, Lifeng ;
Mou, Shan ;
Li, Fangying ;
Zeng, Yuyang ;
Sun, Yang ;
Horch, Raymund E. ;
Wei, Wei ;
Wang, Zhenxing ;
Sun, Jiaming .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (49) :46183-46196
[4]   Lower extremity lymphedema in patients with gynecologic malignancies [J].
Dessources, Kimberly ;
Aviki, Emeline ;
Leitao, Mario M., Jr. .
INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2020, 30 (02) :252-260
[5]   Sunitinib Stimulates Expression of VEGFC by Tumor Cells and Promotes Lymphangiogenesis in Clear Cell Renal Cell Carcinomas [J].
Dufies, Maeva ;
Giuliano, Sandy ;
Ambrosetti, Damien ;
Claren, Audrey ;
Ndiaye, Papa Diogop ;
Mastri, Michalis ;
Moghrabi, Walid ;
Cooley, Lindsay S. ;
Ettaiche, Marc ;
Chamorey, Emmanuel ;
Parola, Julien ;
Vial, Valerie ;
Lupu-Plesu, Marilena ;
Bernhard, Jean Christophe ;
Ravaud, Alain ;
Borchielli, Delphine ;
Ferrero, Jean-Marc ;
Bikfalvi, Andreas ;
Ebos, John M. ;
Khabar, Khalid Saad ;
Grepin, Renaud ;
Pages, Gilles .
CANCER RESEARCH, 2017, 77 (05) :1212-1226
[6]   Glycosaminoglycan Regulation by VEGFA and VEGFC of the Glomerular Microvascular Endothelial Cell Glycocalyx in Vitro [J].
Foster, Rebecca R. ;
Armstrong, Lynne ;
Baker, Sian ;
Wong, Dickson W. L. ;
Wylie, Emma C. ;
Ramnath, Raina ;
Jenkins, Robert ;
Singh, Anurag ;
Steadman, Robert ;
Welsh, Gavin I. ;
Mathieson, Peter W. ;
Satchell, Simon C. .
AMERICAN JOURNAL OF PATHOLOGY, 2013, 183 (02) :604-616
[7]   Lymphovenous bypass for the treatment of lymphedema [J].
Garza, Rebecca M. ;
Chang, David W. .
JOURNAL OF SURGICAL ONCOLOGY, 2018, 118 (05) :743-749
[8]   HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development [J].
Gauvrit, Sebastien ;
Villasenor, Alethia ;
Strilic, Boris ;
Kitchen, Philip ;
Collins, Michelle M. ;
Marin-Juez, Ruben ;
Guenther, Stefan ;
Maischein, Hans-Martin ;
Fukuda, Nana ;
Canham, Maurice A. ;
Brickman, Joshua M. ;
Bogue, Clifford W. ;
Jayaraman, Padma-Sheela ;
Stainier, Didier Y. R. .
NATURE COMMUNICATIONS, 2018, 9
[9]   Breast cancer-related lymphedema: risk factors, precautionary measures, and treatments [J].
Gillespie, Tessa C. ;
Sayegh, Hoda E. ;
Brunelle, Cheryl L. ;
Daniell, Kayla M. ;
Taghian, Alphonse G. .
GLAND SURGERY, 2018, 7 (04) :379-403
[10]   Diagnostic Potential of Neural Exosome Cargo as Biomarkers for Acute Brain Injury [J].
Goetzl, Laura ;
Merabova, Nana ;
Darbinian, Nune ;
Martirosyan, Diana ;
Poletto, Erica ;
Fugarolas, Keri ;
Menkiti, Ogechukwu .
ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, 2018, 5 (01) :4-10