Large magnetocaloric effect and critical behaviour analysis in Gd2Cu2In

被引:4
作者
Kumar, K. Ramesh [1 ,2 ]
Nair, Harikrishnan S. [3 ]
Sahu, B. N. [1 ]
Xhakaza, Sindiwise [1 ]
Strydom, Andre M. [1 ,4 ]
机构
[1] Univ Johannesburg, Dept Phys, Highly Correlated Matter Res Grp, POB 524, ZA-2006 Auckland Pk, South Africa
[2] Tata Inst Fundamental Res Colaba, Dept Condensed Matter Phys & Mat Sci, Bombay 400005, Maharashtra, India
[3] Univ Texas El Paso, Dept Phys, 500 W Univ Ave, El Paso, TX 79968 USA
[4] Max Planck Inst Chem Phys Solids MPICPfS, Nothnitzer Str 40, D-01187 Dresden, Germany
关键词
MAGNETIC PHASE-TRANSITIONS; COMPOUND; DY2CU2IN; GD;
D O I
10.1209/0295-5075/122/17003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ternary intermetallic compound Gd2Cu2In crystallizes in the Mo2Fe2B-type structure with the space group P4/mbm. The compound undergoes a ferromagnetic-paramagnetic (FM-PM) phase transition at 94.1K and large magnetocaloric effect has been observed over a wide range of temperature. The isothermal magnetic entropy change (Delta Sm) and adiabatic temperature change (Delta T-ad) were observed to be 13.8 J/kg.K and 6.5K for 7T applied field. We have employed a modified Arrott plot (MAP) and Kouvel-Fisher (KF) procedures to estimate the critical exponents near the FM-PM phase transition. Critical exponents beta = 0.312(2) and gamma = 1.080(5) are estimated through a non-linear fitting. The beta value is close to the three-dimensional (3D) Ising value, whereas gamma and delta values lie closer to the mean-field values. Scaled magnetic isotherms collapse into two branches below and above TC in accordance with a single scaling equation. Specific-heat measurements show a lambda-type peak near 94K indicating long-range magnetic ordering. The specific-heat exponent a was estimated by a non-linear fitting using the function C-P = B + Cc + A(+/-)|c|(-alpha) (1 + E-+/-|c|(0.5)). The fitting in the temperature range -0.025 < c < 0.025 yields alpha = 0.11(3). Copyright (C) EPLA, 2018.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Magnetic transition and large reversible magnetocaloric effect in EuCu1.75P2 compound [J].
Huo De-Xuan ;
Liao Luo-Bing ;
Li Ling-Wei ;
Li Miao ;
Qian Zheng-Hong .
CHINESE PHYSICS B, 2013, 22 (02)
[42]   Study of the magnetic transition and large magnetocaloric effect in DyCo3B2 compound [J].
Li, Lingwei ;
Igawa, Hiroto ;
Nishimura, Katsuhiko ;
Huo, Dexuan .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (08)
[43]   Magnetocaloric effect in RCo2 compounds [J].
Ovchenkova, I. A. ;
Tskhadadze, G. A. ;
Zhukova, D. A. ;
Ivanova, T. I. ;
Nikitin, S. A. .
MAGNETISM AND MAGNETIC MATERIALS V, 2012, 190 :339-342
[44]   Magnetotransport and magnetocaloric effect in Ho2In [J].
Bhattacharyya, A. ;
Chatterjee, S. ;
Giri, S. ;
Majumdar, S. .
EUROPEAN PHYSICAL JOURNAL B, 2009, 70 (03) :347-351
[45]   Crystal structure, magnetic property and cryogenic magnetocaloric effect of Gd4Al2O9 aluminate [J].
Zhang, Zhenqian ;
Na, Yingzhe ;
Lin, Junli ;
Ye, Xinyue .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2024, 610
[46]   Synthesis, Physical, and Magnetocaloric Properties of MgZn2-Type Gd2Al3Rh [J].
Eustermann, Fabian ;
Stegemann, Frank ;
Janka, Oliver .
INORGANIC CHEMISTRY, 2024, 63 (30) :14086-14092
[47]   Giant magnetocaloric and barocaloric effects in R5Si2Ge2 (R = Tb, Gd) [J].
de Oliveira, N. A. .
JOURNAL OF APPLIED PHYSICS, 2013, 113 (03)
[48]   Magnetocaloric properties of Gd2MoO6 prepared by a simple and fast method [J].
Tkac, V. ;
Tothova, E. ;
Tibenska, K. ;
Orendacova, A. ;
Orendac, M. ;
Tarasenko, R. .
CERAMICS INTERNATIONAL, 2021, 47 (17) :24421-24429
[49]   Large reversible magnetocaloric effect in RMn2 (R = Tb, Dy, Ho, Er) compounds [J].
Zuo, Wenliang ;
Hu, Fengxia ;
Sun, Jirong ;
Shen, Baogen .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 575 :162-167
[50]   Magnetic properties and magnetocaloric effect of HoCo3B2 compound [J].
Zheng, X. Q. ;
Xu, J. W. ;
Zhang, H. ;
Zhang, J. Y. ;
Wang, S. G. ;
Zhang, Y. ;
Xu, Z. Y. ;
Wang, L. C. ;
Shen, B. G. .
AIP ADVANCES, 2018, 8 (05)