Large magnetocaloric effect and critical behaviour analysis in Gd2Cu2In

被引:4
|
作者
Kumar, K. Ramesh [1 ,2 ]
Nair, Harikrishnan S. [3 ]
Sahu, B. N. [1 ]
Xhakaza, Sindiwise [1 ]
Strydom, Andre M. [1 ,4 ]
机构
[1] Univ Johannesburg, Dept Phys, Highly Correlated Matter Res Grp, POB 524, ZA-2006 Auckland Pk, South Africa
[2] Tata Inst Fundamental Res Colaba, Dept Condensed Matter Phys & Mat Sci, Bombay 400005, Maharashtra, India
[3] Univ Texas El Paso, Dept Phys, 500 W Univ Ave, El Paso, TX 79968 USA
[4] Max Planck Inst Chem Phys Solids MPICPfS, Nothnitzer Str 40, D-01187 Dresden, Germany
关键词
MAGNETIC PHASE-TRANSITIONS; COMPOUND; DY2CU2IN; GD;
D O I
10.1209/0295-5075/122/17003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ternary intermetallic compound Gd2Cu2In crystallizes in the Mo2Fe2B-type structure with the space group P4/mbm. The compound undergoes a ferromagnetic-paramagnetic (FM-PM) phase transition at 94.1K and large magnetocaloric effect has been observed over a wide range of temperature. The isothermal magnetic entropy change (Delta Sm) and adiabatic temperature change (Delta T-ad) were observed to be 13.8 J/kg.K and 6.5K for 7T applied field. We have employed a modified Arrott plot (MAP) and Kouvel-Fisher (KF) procedures to estimate the critical exponents near the FM-PM phase transition. Critical exponents beta = 0.312(2) and gamma = 1.080(5) are estimated through a non-linear fitting. The beta value is close to the three-dimensional (3D) Ising value, whereas gamma and delta values lie closer to the mean-field values. Scaled magnetic isotherms collapse into two branches below and above TC in accordance with a single scaling equation. Specific-heat measurements show a lambda-type peak near 94K indicating long-range magnetic ordering. The specific-heat exponent a was estimated by a non-linear fitting using the function C-P = B + Cc + A(+/-)|c|(-alpha) (1 + E-+/-|c|(0.5)). The fitting in the temperature range -0.025 < c < 0.025 yields alpha = 0.11(3). Copyright (C) EPLA, 2018.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Influence of Co Doping on Crystal and Magnetic Properties of Gd2Cu2In
    Gondek, L.
    Szytula, A.
    Kaczorowski, D.
    Szewczyk, A.
    Gutowska, M.
    Tyvanchuk, Yu
    Kalychak, Ya M.
    ACTA PHYSICA POLONICA A, 2012, 122 (01) : 216 - 219
  • [2] Magnetocaloric effect in R2Cu2Cd (R=Gd, Tb, Er, Tm)
    Patino, J. Caro
    de Oliveira, N. A.
    PHYSICA B-CONDENSED MATTER, 2023, 650
  • [3] Magnetocaloric effect in Gd1-xNdxZn2
    Matsumoto, Keisuke T.
    Hiraoka, Koichi
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2017, 438 : 107 - 110
  • [4] Magnetocaloric effect in Gd2PdSi3
    Sampathkumaran, EV
    Das, I
    Rawat, R
    Majumdar, S
    APPLIED PHYSICS LETTERS, 2000, 77 (03) : 418 - 420
  • [5] Magnetocaloric effect in Gd5Si2Ge2/Gd composite materials
    Yue, M
    Zhang, J
    Zeng, H
    Chen, H
    Liu, XB
    JOURNAL OF APPLIED PHYSICS, 2006, 99 (08)
  • [6] Magnetocaloric effect in Gd5Si2Ge2/Gd composite materials
    Yue, M.
    Zhang, J.
    Zeng, H.
    Chen, H.
    Liu, X.B.
    Journal of Applied Physics, 2006, 99 (08):
  • [7] Critical behaviour and magnetocaloric effect simulation in Tb2Rh3Ge
    Nawel Khedmi
    Khadhraoui Salha
    Mohamed Hsini
    Bulletin of Materials Science, 46
  • [8] Critical behaviour and magnetocaloric effect simulation in Tb2Rh3Ge
    Khedmi, Nawel
    Salha, Khadhraoui
    Hsini, Mohamed
    BULLETIN OF MATERIALS SCIENCE, 2023, 46 (04)
  • [9] Large cryogenic magnetocaloric effect in borosilicate Gd3BSi2O10
    Chen, Zuhua
    Cheng, Pengtao
    Zhang, Chengliang
    Zhang, Zhengming
    Tu, Heng
    Zhang, Guochun
    Shen, Jun
    Wang, Dunhui
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 588
  • [10] Observation of a large magnetocaloric effect in a 2D Gd(III)-based coordination polymer
    Biswas, Soumava
    Adhikary, Amit
    Goswami, Soumyabrata
    Konar, Sanjit
    DALTON TRANSACTIONS, 2013, 42 (37) : 13331 - 13334