Enhancing the properties of foam concrete 3D printing using porous aggregates

被引:47
|
作者
Pasupathy, Kirubajiny [1 ]
Ramakrishnan, Sayanthan [1 ]
Sanjayan, Jay [1 ]
机构
[1] Swinburne Univ Technol, Ctr Sustainable Infrastructure & Digital Construct, Sch Engn, Hawthorn, Vic 3122, Australia
基金
澳大利亚研究理事会;
关键词
Foam concrete; 3D printing; Rheological properties; Expanded perlite; Porosity; Compressive strength; HIGH-VOLUME; CONSTRUCTION; WALL;
D O I
10.1016/j.cemconcomp.2022.104687
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The lightweight concrete (density <1000 kg/m3) is generally attained by introducing a large amount of air voids into fresh concrete for making so-called foam concrete. Such foam concrete is quite challenging in 3D concrete printing due to the high flowability of fresh mixes affecting the printability and foam stability during extrusion process. To overcome these limitations, this study investigates a combination of lightweight aggregates and premade foam in foam concrete to attain a density below 1000 kg/m3 for 3D printing applications. The expanded perlite (EP) aggregate was used as a replacement for fine sand that substantially reduced the foam content in the mix. The effect of EP on the fresh state properties such as rheology and printability as well as hardened properties including, mechanical properties, porosity and pore size distribution were investigated. It was demonstrated that the introduction of combined lightweight aggregate and foam has significantly improved the fresh and hardened properties of produced lightweight concrete. For instance, fresh foam concrete containing EP aggregate displayed high yield strength and apparent viscosity compared to the foam concrete without EP at similar densities. The compressive strength of 3D printed specimens containing EP was determined as 12.95 MPa, 15.5 MPa and 10.6 MPa in the perpendicular, longitudinal, and lateral directions respectively, compared to 5.5 MPa, 8.4 MPa and 4.2 MPa for the sand group at the similar density. Moreover, fine and regular pore size distribution was observed for 3D printed foam concrete with EP aggregate.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Recent advances in 3D printing of porous ceramics: A review
    Hwa, Lim Chin
    Rajoo, Srithar
    Noor, Alias Mohd
    Ahmad, Norhayati
    Uday, M. B.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2017, 21 (06) : 323 - 347
  • [32] Cost Calculation of Concrete 3D Printing
    Otto, Jens
    Kortmann, Jan
    Krause, Martin
    BETON- UND STAHLBETONBAU, 2020, 115 (08) : 586 - 597
  • [33] POTENTIALS AND CHALLENGES IN 3D CONCRETE PRINTING
    Salet, T. A. M.
    Wolfs, R. J. M.
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON PROGRESS IN ADDITIVE MANUFACTURING (PRO-AM 2016), 2016, : 8 - 13
  • [34] Reinforcements in 3D printing concrete structures
    Alonso-Canon, Sara
    Blanco-Fernandez, Elena
    Castro-Fresno, Daniel
    Yoris-Nobile, Adrian, I
    Castanon-Jano, Laura
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2022, 23 (01)
  • [35] Fabrication and Compression Properties of Two-Layered Porous Structure of Different Materials by Direct Printing of Resin Porous Structure on Aluminum Foam Using a 3D Printer
    Hangai, Yoshihiko
    Yamazaki, Reiji
    Suzuki, Takaaki
    MATERIALS, 2025, 18 (02)
  • [36] Possibilities of using the 3D printing process in the concrete and geopolymers application
    Marczyk, J.
    Ziejewska, C.
    Lach, M.
    Korniejenko, K.
    Lin, W. T.
    Hebda, M.
    DEVELOPMENT OF ECO-FRIENDLY COMPOSITE MATERIALS BASED ON GEOPOLYMER MATRIX AND REINFORCED WITH WASTE FIBERS, 2019, 706
  • [37] Using 3D Printing Techniques to Build Artificial Porous Media
    de Sena Monteiro Ozelim, Luan Carlos
    Brasil Cavalcante, Andre Luis
    GEOTECHNICAL ENGINEERING IN THE XXI CENTURY: LESSONS LEARNED AND FUTURE CHALLENGES, 2019, : 485 - 492
  • [38] CONSTRUCTION-SCALE 3D PRINTING: SHAPE STABILITY OF FRESH PRINTING CONCRETE
    Kazemian, Ali
    Yuan, Xiao
    Meier, Ryan
    Cochran, Evan
    Khoshnevis, Behrokh
    PROCEEDINGS OF THE ASME 12TH INTERNATIONAL MANUFACTURING SCIENCE AND ENGINEERING CONFERENCE - 2017, VOL 2, 2017,
  • [39] Effect of Strain Rate on Dynamic Compressive Properties of 3D Printing Concrete
    Wang H.
    Tao A.
    Sun X.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2024, 52 (05): : 1499 - 1507
  • [40] Effect of 3D printing path on mechanical properties of arch concrete bridge
    Sun X.-Y.
    Tang G.
    Wang H.-L.
    Wang Q.
    Zhang Z.-C.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2020, 54 (11): : 2085 - 2091