Adaptive Hierarchical Probabilistic Model Using Structured Variational Inference for Point Set Registration

被引:8
|
作者
He, Qiqi [1 ,2 ]
Zhou, Jie [1 ,2 ]
Xu, Shijin [1 ,2 ]
Yang, Yang [1 ,2 ]
Yu, Rui [1 ,2 ]
Liu, Yuhe [1 ,2 ]
机构
[1] Yunnan Normal Univ, Sch Informat Sci & Technol, Kunming 650500, Yunnan, Peoples R China
[2] Yunnan Normal Univ, Engn Res Ctr GIS Technol Western China, Natl Minist Educ, Kunming 650500, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Hierarchical probabilisticmodel (HPM); hesitant fuzzy Einstein weighted averaging (HFEWA); nonrigid point set registration; symmetric cross entropy; variational Bayesian (VB); ROBUST; ALGORITHM; MIXTURE;
D O I
10.1109/TFUZZ.2020.2974433
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Point set registration plays an important role in computer vision and pattern recognition. In this article, we propose an adaptive hierarchical probabilisticmodel (HPM) under a variational Bayesian (VB) framework for point set registration problem. The main contributions of this article are given as follows. First, a dynamic putative inlier estimation strategy is proposed through the hesitant fuzzy Einstein weighted averaging based membership calculation and component estimation using symmetric cross entropy. Second, a student-t mixture model based HPM is designed to solve outlier and occlusion problems during registration. Third, a VB-based transformation updating is proposed to construct a robust and adjustable transformation for effectively fitting target point set while further resisting outliers. The performances of the proposed method in point set and image registrations against 11 state-of-the-art methods are evaluated, in which our method gives the best performance in most scenarios.
引用
收藏
页码:2784 / 2798
页数:15
相关论文
共 50 条
  • [41] Smooth point-set registration using neighboring constraints
    Sanroma, Gerard
    Alquezar, Rene
    Serratosa, Francesc
    Herrera, Blas
    PATTERN RECOGNITION LETTERS, 2012, 33 (15) : 2029 - 2037
  • [42] A robust algorithm for point set registration using mixture of Gaussians
    Jian, B
    Vemuri, BC
    TENTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1 AND 2, PROCEEDINGS, 2005, : 1246 - 1251
  • [43] Robust Point Set Registration Using Gaussian Mixture Models
    Jian, Bing
    Vemuri, Baba C.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (08) : 1633 - 1645
  • [44] MODEL-BASED PROBABILISTIC SITUATION INFERENCE IN HIERARCHICAL HYPOTHESIS SPACES.
    Levitt, Tod S.
    1986, 4 : 347 - 356
  • [45] Model set adaptive filtering algorithm using variational Bayesian approximations and Renyi information divergence
    Ma, Tianli
    Chen, ChaoBo
    Gao, Song
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2020, 2020 (01)
  • [46] Forecasting using variational Bayesian inference in large vector autoregressions with hierarchical shrinkage
    Gefang, Deborah
    Koop, Gary
    Poon, Aubrey
    INTERNATIONAL JOURNAL OF FORECASTING, 2023, 39 (01) : 346 - 363
  • [47] Parameter inference in a probabilistic model using clustered data
    Kiwata, Hirohito
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 513 : 112 - 125
  • [48] Fuzzy correspondences guided Gaussian mixture model for point set registration
    Wang, Gang
    Chen, Yufei
    KNOWLEDGE-BASED SYSTEMS, 2017, 136 : 200 - 209
  • [49] Hippocampus Localization Guided by Coherent Point Drift Registration Using Assembled Point Set
    Achuthan, Anusha
    Rajeswari, Mandava
    Jalaluddin, Win Mar Salmah
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, 2013, 8073 : 92 - 102
  • [50] Non-Rigid Point Set Registration via Adaptive Weighted Objective Function
    Yang, Changcai
    Liu, Yizhang
    Jiang, Xingyu
    Zhang, Zejun
    Wei, Lifang
    Lai, Taotao
    Chen, Riqing
    IEEE ACCESS, 2018, 6 : 75947 - 75960