dc=4 is the upper critical dimension for the Bak-Sneppen model

被引:10
|
作者
Boettcher, S [1 ]
Paczuski, M
机构
[1] Emory Univ, Dept Phys, Atlanta, GA 30322 USA
[2] NORDITA, DK-2100 Copenhagen, Denmark
[3] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2BZ, England
关键词
D O I
10.1103/PhysRevLett.84.2267
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Numerical results are presented indicating d(c) = 4 as the upper critical dimension for the Bak-Sneppen evolution model. This finding agrees with previous theoretical arguments, but contradicts a recent Letter [Phys. Rev. Lett. 80, 5746 (1998)] that placed d(c) as high as d = 8. In particular, we find that avalanches are compact for all dimensions d less than or equal to 4 and are fractal for d > 4. Under those conditions, scaling arguments predict a d(c) = 4, where hyperscaling relations hold for d less than or equal to 4. Other properties of avalanches, studied for 1 less than or equal to d less than or equal to 6, corroborate this result. To this end, an improved numerical algorithm is presented that is based on the equivalent branching process.
引用
收藏
页码:2267 / 2270
页数:4
相关论文
共 50 条
  • [1] Critical fluctuations in the Bak-Sneppen model
    Xiao, S. S.
    Yang, C. B.
    EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (05):
  • [2] Critical fluctuations in the Bak-Sneppen model
    S. S. Xiao
    C. B. Yang
    The European Physical Journal B, 2012, 85
  • [3] Bak-Sneppen model near zero dimension
    Dorogovtsev, SN
    Mendes, JFF
    Pogorelov, YG
    PHYSICAL REVIEW E, 2000, 62 (01): : 295 - 298
  • [4] Critical exponents of the anisotropic Bak-Sneppen model
    Maslov, S
    De los Rios, P
    Marsili, M
    Zhang, YC
    PHYSICAL REVIEW E, 1998, 58 (06): : 7141 - 7145
  • [5] Critical dynamics of anisotropic Bak-Sneppen model
    Tirnakli, U
    Lyra, ML
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 342 (1-2) : 151 - 157
  • [6] The anisotropic Bak-Sneppen model
    Head, DA
    Rodgers, GJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (17): : 3977 - 3988
  • [7] Bak-Sneppen model: Local equilibrium and critical value
    Fraiman, Daniel
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [8] Critical behavior of a stochastic anisotropic Bak-Sneppen model
    Han, Jihui
    Li, Wei
    Su, Zhu
    Deng, Webing
    EUROPEAN PHYSICAL JOURNAL B, 2017, 90 (11):
  • [9] Rigorous Upper Bound for the Discrete Bak-Sneppen Model
    Volkov, Stanislav
    JOURNAL OF STATISTICAL PHYSICS, 2022, 186 (01)
  • [10] Critical thresholds and the limit distribution in the Bak-Sneppen model
    Meester, R
    Znamenski, D
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 246 (01) : 63 - 86