Artificial neural network model for effective cancer classification using microarray gene expression data

被引:77
|
作者
Dwivedi, Ashok Kumar [1 ]
机构
[1] Maulana Azad Natl Inst Technol, Dept Bioinformat Comp Applicat & Math, Bhopal 462003, MP, India
关键词
Machine learning; Artificial neural network; Support vector machine; Cancer; Classification; Microarrays; Pattern classification; SUPPORT VECTOR MACHINES; LOGISTIC-REGRESSION; MOLECULAR CLASSIFICATION; PREDICTION; COMBINATION; RECOMBINANT; INFORMATION; SEQUENCES; KNOWLEDGE; ENSEMBLES;
D O I
10.1007/s00521-016-2701-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Microarray gene expression profile shall be exploited for the efficient and effective classification of cancers. This is a computationally challenging task because of large quantity of genes and relatively small amount of experiments in gene expression data. The repercussion of this work is to devise a framework of techniques based on supervised machine learning for discrimination of acute lymphoblastic leukemia and acute myeloid leukemia using microarray gene expression profiles. Artificial neural network (ANN) technique was employed for this classification. Moreover, ANN was compared with other five machine learning techniques. These methods were assessed on eight different classification performance measures. This article reports a significant classification accuracy of 98% using ANN with no error in identification of acute lymphoblastic leukemia and only one error in identification of acute myeloid leukemia on tenfold cross-validation and leave-one-out approach. Furthermore, models were validated on independent test data, and all samples were correctly classified.
引用
收藏
页码:1545 / 1554
页数:10
相关论文
共 50 条
  • [1] Artificial neural network model for effective cancer classification using microarray gene expression data
    Ashok Kumar Dwivedi
    Neural Computing and Applications, 2018, 29 : 1545 - 1554
  • [2] Cancer Classification from DNA Microarray Data using mRMR and Artificial Neural Network
    Akhand, M. A. H.
    Miah, Md Asaduzzaman
    Kabir, Mir Hussain
    Rahman, M. M. Hafizur
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (07) : 106 - 111
  • [3] Spark based classification of microarray data using scalable artificial neural network
    Kumar, Mukesh
    Ray, Ransingh B.
    Rath, Santanu K.
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 19 (04) : 312 - 339
  • [4] Classification of Microarray Gene Expression Data Using an Infiltration Tactics Optimization (ITO) Algorithm
    Zahoor, Javed
    Zafar, Kashif
    GENES, 2020, 11 (07) : 1 - 28
  • [5] Cancer Classification Based on Microarray Gene Expression Data Using Deep Learning
    Guillen, Pablo
    Ebalunode, Jerry
    2016 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE & COMPUTATIONAL INTELLIGENCE (CSCI), 2016, : 1403 - 1405
  • [6] Artificial neural network classification of microarray data using new hybrid gene selection method
    Aziz, Rabia
    Verma, C. K.
    Jha, Manoj
    Srivastava, Namita
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 17 (01) : 42 - 65
  • [7] Reliable multiclass cancer classification of microarray gene expression profiles using an improved wavelet neural network
    Zainuddin, Zarita
    Ong, Pauline
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (11) : 13711 - 13722
  • [8] Improved Wavelet Neural Network for Early Diagnosis of Cancer Patients Using Microarray Gene Expression Data
    Zainuddin, Zarita
    Pauline, Ong
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 2663 - 2670
  • [9] Classification of Robotic Data using Artificial Neural Network
    Gopalapillai, Radhakrishnan
    Vidhya, J.
    Gupta, Deepa
    Sudarshan, T. S. B.
    2013 IEEE RECENT ADVANCES IN INTELLIGENT COMPUTATIONAL SYSTEMS (RAICS), 2013, : 333 - 337
  • [10] Classification of breast cancer using microarray gene expression data: A survey
    Abd-Elnaby, Muhammed
    Alfonse, Marco
    Roushdy, Mohamed
    JOURNAL OF BIOMEDICAL INFORMATICS, 2021, 117