Modeling and topology design for free-space optical networks

被引:2
|
作者
Luo, Yufei [1 ]
Gao, Zhan [1 ]
Chen, Te [2 ]
Fan, Luhai [2 ]
Dang, Anhong [1 ]
机构
[1] Peking Univ, Dept Elect, State Key Lab Adv Opt Commun Syst & Networks, Beijing, Peoples R China
[2] China Acad Space Technol, Inst Telecommun Satellite, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
free-space optical networks; bundle protocol; atmospheric turbulence; pointing error; ATMOSPHERIC-TURBULENCE; PERFORMANCE;
D O I
10.1117/1.OE.58.7.076104
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
To date, free-space optical (FSO) networks play an important role in current network construction to support large-capacity transmission, where randomly distributed FSO terminals desire to exchange a tremendous amount of information over atmospheric turbulence channels. However, in the presence of atmospheric turbulence and misalignment fading channels, FSO network topology can be dynamic and disconnected. To mitigate the impact of dynamic network environments, appropriate higher-layer protocols should be designed. We explore a practical terrestrial mobile ad-hoc FSO network based on the bundle protocol of disruption-tolerant network, and the theoretical cross-layer system model between physical layer and network layer is derived. To design the topology, at the bundle layer, the distributed routing scheme centrality and probability (CAP) is proposed, where contact probability, sociocentric measure, and message replication strategy are considered simultaneously, and the joint forwarding decision rule is given. Simulation results on the opportunistic networking environment simulator are presented, which show that CAP can be better compared with the conventional end-to-end protocol-based routing scheme. (C) 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Free-Space Optical Communication Channel Modeling
    Rao, G. Eswara
    Jena, Hara Prasana
    Mishra, Aditya Shaswat
    Patnaik, Bijayananda
    PROCEEDINGS OF 3RD INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING, NETWORKING AND INFORMATICS (ICACNI 2015), VOL 1, 2016, 43 : 391 - 396
  • [2] Bootstrapping free-space optical networks
    Liu, Fang
    Vishkin, Uzi
    Milner, Stuart
    IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2006, 24 (12) : 13 - 22
  • [3] Free-Space Optical Communication Impaired by Angular Fluctuations
    Huang, Shenjie
    Safari, Majid
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2017, 16 (11) : 7475 - 7487
  • [4] Demonstration of Point-to-Multipoint Transmission for Free-Space Optical Communication Networks
    Jiang, Hexin
    Yu, Zhaoxin
    Feng, Xianglian
    Gao, Shiming
    2018 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP), 2018,
  • [5] Flexible Free-Space Optical CDMA Networks
    Alvarez-Roa, Maria
    Alvarez-Roa, Carmen
    Raddo, Thiago R.
    Castillo-Vazquez, Miguel
    Castillo-Vazquez, Carmen
    Borges, Ben-Hur V.
    Monroy, Idelfonso Tafur
    Jurado-Navas, Antonio
    IEEE ACCESS, 2023, 11 : 130031 - 130047
  • [6] Modeling and Experimental Study of The Vibration Effects in Urban Free-Space Optical Communication Systems
    Cai, Wenqi
    N'Doye, Ibrahima
    Ooi, Boon S.
    Alouini, Mohamed-Slim
    Laleg-Kirati, Taous Meriem
    IEEE PHOTONICS JOURNAL, 2019, 11 (06):
  • [7] Channel Measurement and Markov Modeling of an Urban Free-Space Optical Link
    Mostafa, Ayman
    Hranilovic, Steve
    JOURNAL OF OPTICAL COMMUNICATIONS AND NETWORKING, 2012, 4 (10) : 836 - 846
  • [8] Differential Signalling in Free-Space Optical Communication Systems
    Abadi, Mojtaba Mansour
    Ghassemlooy, Zabih
    Bhatnagar, Manav R.
    Zvanovec, Stanislav
    Khalighi, Mohammad-Ali
    Lavery, Martin P. J.
    APPLIED SCIENCES-BASEL, 2018, 8 (06):
  • [9] Multiuser Diversity Scheduling in Free-Space Optical Communications
    Abouei, Jamshid
    Plataniotis, Konstantinos N.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2012, 30 (09) : 1351 - 1358
  • [10] All-Optical Multihop Free-Space Optical Communication Systems
    Kazemlou, Shabnam
    Hranilovic, Steve
    Kumar, Shiva
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2011, 29 (18) : 2663 - 2669