Gram-Schmidt orthogonalization for rapid reconstructions of Fourier transform infrared spectroscopic imaging data

被引:13
|
作者
Bhargava, R [1 ]
Levin, IW [1 ]
机构
[1] NIDDK, Phys Chem Lab, NIH, Bethesda, MD 20892 USA
关键词
Fourier transform infrared spectroscopy; FT-IR; infrared spectroscopic imaging; Gram-Schmidt orthogonalization; data processing; skin; time-resolved spectroscopy; time-resolved imaging;
D O I
10.1366/0003702041655412
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Increasingly voluminous Fourier transform infrared (FT-IR) spectroscopic imaging data sets are being generated with the advent of both faster array detectors and the implementation of time-resolved imaging techniques, resulting in data processing becoming the limiting step in visualizing sample heterogeneity and temporal profile evolution. We report the application of a Gram-Schmidt vector orthogonalization procedure in interferogram space to provide a significant time saving advantage in processing of one to two orders of magnitude in comparison to conventional spectral processing. Illustrative data from human skin biopsies and from dynamic molecular reorganizations within liquid crystalline microdomains is employed to discuss the capabilities and limitations of this information-extraction approach.
引用
收藏
页码:995 / 1000
页数:6
相关论文
共 50 条
  • [1] The loss of orthogonality in the Gram-Schmidt orthogonalization process
    Giraud, L
    Langou, J
    Rozloznik, M
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 50 (07) : 1069 - 1075
  • [3] Multiple description quantization via Gram-Schmidt orthogonalization
    Chen, Jun
    Tian, Chao
    Berger, Toby
    Hemami, Sheila S.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (12) : 5197 - 5217
  • [4] Distributed Gram-Schmidt Orthogonalization based on Dynamic Consensus
    Sluciak, Ondrej
    Strakova, Hana
    Rupp, Markus
    Gansterer, Wilfried N.
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 1207 - 1211
  • [5] SOLVING THE KRIGING PROBLEM BY USING THE GRAM-SCHMIDT ORTHOGONALIZATION
    KACEWICZ, M
    MATHEMATICAL GEOLOGY, 1991, 23 (01): : 111 - 118
  • [6] Distributed Gram-Schmidt orthogonalization with simultaneous elements refinement
    Ondrej Slučiak
    Hana Straková
    Markus Rupp
    Wilfried Gansterer
    EURASIP Journal on Advances in Signal Processing, 2016
  • [7] Distributed Gram-Schmidt orthogonalization with simultaneous elements refinement
    Sluciak, Ondrej
    Strakova, Hana
    Rupp, Markus
    Gansterer, Wilfried
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2016, : 1 - 13
  • [8] A generalization of Gram-Schmidt orthogonalization generating all Parseval frames
    Casazza, Peter G.
    Kutyniok, Gitta
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 27 (01) : 65 - 78
  • [9] Modified Gram-Schmidt Orthogonalization of Covariance Matrix Adaptive Beamforming Based on Data Preprocessing
    Yang, Xiaopeng
    Hu, Xiaona
    Liu, Yongxu
    PROCEEDINGS OF 2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP) VOLS 1-3, 2012, : 373 - 377
  • [10] Group endmember extraction algorithm based on Gram-Schmidt orthogonalization
    Zhao, Yan
    Zhou, Zhen
    Wang, Donghui
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (02):