Sodium titanate cuboid as advanced anode material for sodium ion batteries

被引:49
|
作者
Zhang, Yan [1 ]
Hou, Hongshuai [1 ]
Yang, Xuming [1 ]
Chen, Jun [1 ]
Jing, Mingjun [1 ]
Wu, Zhibin [1 ]
Jia, Xinnan [1 ]
Ji, Xiaobo [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
基金
湖南省自然科学基金; 中国国家自然科学基金;
关键词
Sodium titanate cuboid; Anode; Sodium-ion batteries; Binders; LI-ION; NEGATIVE ELECTRODES; NA; LITHIUM; BINDER; STORAGE; MICROSPHERES; STABILITY; MECHANISM;
D O I
10.1016/j.jpowsour.2015.11.101
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium titanate (Na2Ti6O13) cuboid is successfully prepared and employed for anode electrode materials in sodium -ion batteries (SIBs). Their sodium storage properties are presented by undertaking polyvinylidene fluoride (PVDF), carboxymethyl cellulose (CMC) as different binders. At a current density of 0.1 C, the sodium titanate cuboid with CMC and PVDF exhibits discharge capacity of 269.5 mAh g(-1) and 251.0 mAh g(-1), respectively. At the 200th charge/discharge cycle, the reserved discharge capacity for Sodium titanate cuboid electrode with CMC binder is 173.6 mAh g(-1), amounting to a capacity retention of 94.4%, much higher than that employing PVDF as binder (the discharge capacity of 69.3 mAh g(-1) and the capacity retention of 54.1%). The rate capability test and the Coulombic efficiency data also manifest that the Sodium titanate cuboid utilizing CMC as binder is superior to the ones with PVDF. These enhanced electrochemical performance mainly derive from the strong cohesive strength of CMC binder and the swellability of PVDF binder, verifying the importance of a binder to the optimization of sodium storage behavior. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:200 / 208
页数:9
相关论文
共 50 条
  • [21] Bismuth sulfide: A high-capacity anode for sodium-ion batteries
    Sun, Wenping
    Rui, Xianhong
    Zhang, Dan
    Jiang, Yinzhu
    Sun, Ziqi
    Liu, Huakun
    Dou, Shixue
    JOURNAL OF POWER SOURCES, 2016, 309 : 135 - 140
  • [22] In Situ formed Organic Sodium Salt/rGO Nanocomposite as Anode Material for Sodium Ion Batteries
    Xue, Qianwen
    Luo, Yuansheng
    Tu, Xiaoxue
    Yin, Haoyu
    Chen, Jingfu
    Wu, Fei
    Zhong, Cheng
    Zhu, Linna
    CHEMPHYSCHEM, 2025,
  • [23] Size Effect on Electrochemical Performance of Sodium Terephthalate as Anode Material for Sodium-Ion Batteries
    Li, Yi
    Hu, Xianfei
    Tang, Haoqing
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (07): : 7175 - 7182
  • [24] Sodium Alginate Enabled Advanced Layered Manganese-Based Cathode for Sodium-Ion Batteries
    Xu, Hang
    Jiang, Kezhu
    Zhang, Xueping
    Zhang, Xiaoyu
    Guo, Shaohua
    Zhou, Haoshen
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (30) : 26817 - 26823
  • [25] NiCo2Se4 as an anode material for sodium-ion batteries
    Qiu, Li-Cheng
    Wang, Qin-Chao
    Yue, Xin-Yang
    Qiu, Qi-Qi
    Li, Xun-Lu
    Chen, Dong
    Wu, Xiao-Jing
    Zhou, Yong-Ning
    ELECTROCHEMISTRY COMMUNICATIONS, 2020, 112
  • [26] Fluorine-Doped Hard Carbon as the Advanced Performance Anode Material of Sodium-Ion Batteries
    Kong, Lingchen
    Li, Yu
    Feng, Wei
    TRANSACTIONS OF TIANJIN UNIVERSITY, 2022, 28 (02) : 123 - 131
  • [27] Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries
    Lao, Mengmeng
    Zhang, Yu
    Luo, Wenbin
    Yan, Qingyu
    Sun, Wenping
    Dou, Shi Xue
    ADVANCED MATERIALS, 2017, 29 (48)
  • [28] Layered-Structure SbPO4/Reduced Graphene Oxide: An Advanced Anode Material for Sodium Ion Batteries
    Pan, Jun
    Chen, Shulin
    Fu, Qiang
    Sun, Yuanwei
    Zhang, Yuchen
    Lin, Na
    Gao, Peng
    Yang, Jian
    Qian, Yitai
    ACS NANO, 2018, 12 (12) : 12869 - 12878
  • [29] Cu4SnP10 as a promising anode material for sodium ion batteries
    Lan, Danni
    Wang, Wenhui
    Li, Quan
    NANO ENERGY, 2017, 39 : 506 - 512
  • [30] Thin film manganese oxide polymorphs as anode for sodium-ion batteries: An electrochemical and DFT based study
    Nayak, Debasis
    Ghosh, Sudipto
    Adyam, Venimadhav
    MATERIALS CHEMISTRY AND PHYSICS, 2018, 217 : 82 - 89