Nose-Andersen dynamics of partially rigid molecules: Coupling all degrees of freedom to heat and pressure baths

被引:15
作者
Kneller, GR [1 ]
Mulders, T [1 ]
机构
[1] RHEIN WESTFAL TH AACHEN KLINIKUM,INST BIOCHEM,D-52057 AACHEN,GERMANY
来源
PHYSICAL REVIEW E | 1996年 / 54卷 / 06期
关键词
D O I
10.1103/PhysRevE.54.6825
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We derive the equations of motion for partially rigid molecules in the isothermal-isobaric N-P-T ensemble. The extended system method introduced by Andersen [J. Chem. Phys. 72; 2384 (1980)] and Nose [J. Chem. Phys. 81, 511 (1984)] is generalized to the case of discrete mechanical systems subject to geometrical constraints. In our approach all available degrees of freedom are coupled to both the heat and the pressure bath. In this way we take into account that partially rigid molecules can adapt their conformation to volume fluctuations without violating intramolecular constraints. Using projector techniques and Dirac's theory of constrained Hamiltonian dynamics, we derive the equations of motion in Cartesian coordinates and extend the generalized Euler equations for linked rigid bodies [G. R. Kneller and K. Hinsen, Phys. Rev. E 50, 1559 (1994)] to the case of N-P-T dynamics. We prove that the trajectories generated by our equations of motion correspond to the desired N-P-T ensemble.
引用
收藏
页码:6825 / 6837
页数:13
相关论文
共 34 条
[1]  
Allen M. P., 1987, Computer Simulation of Liquids
[2]   MOLECULAR-DYNAMICS SIMULATIONS AT CONSTANT PRESSURE AND-OR TEMPERATURE [J].
ANDERSEN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (04) :2384-2393
[3]   CONSTRAINTS IN COVARIANT FIELD THEORIES [J].
ANDERSON, JL ;
BERGMANN, PG .
PHYSICAL REVIEW, 1951, 83 (05) :1018-1025
[4]  
[Anonymous], 1973, HAMILTON JACOBI THEO
[5]  
BENISRAEL A, 1974, GEN INVERSES THEORY
[6]   MOLECULAR-DYNAMICS WITH COUPLING TO AN EXTERNAL BATH [J].
BERENDSEN, HJC ;
POSTMA, JPM ;
VANGUNSTEREN, WF ;
DINOLA, A ;
HAAK, JR .
JOURNAL OF CHEMICAL PHYSICS, 1984, 81 (08) :3684-3690
[7]  
CICCOTTI G, 1986, COMPUT PHYS REP, V4, P345, DOI 10.1016/0167-7977(86)90022-5
[8]   HAMILTON EQUATIONS FOR CONSTRAINED DYNAMIC-SYSTEMS [J].
DELEEUW, SW ;
PERRAM, JW ;
PETERSEN, HG .
JOURNAL OF STATISTICAL PHYSICS, 1990, 61 (5-6) :1203-1222
[9]  
Dirac P. A. M., 1964, LECT QUANTUM MECH
[10]   GENERALIZED HAMILTONIAN DYNAMICS [J].
DIRAC, PAM .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1958, 246 (1246) :326-332