A C*-Algebra for Quantized Principal U(1)-Connections on Globally Hyperbolic Lorentzian Manifolds

被引:18
作者
Benini, Marco [1 ,2 ,3 ]
Dappiaggi, Claudio [1 ,2 ]
Hack, Thomas-Paul [4 ]
Schenkel, Alexander [5 ]
机构
[1] Univ Pavia, Dipartimento Fis, I-27100 Pavia, Italy
[2] Ist Nazl Fis Nucl, Sez Pavia, I-27100 Pavia, Italy
[3] Univ Hamburg, Inst Theoret Phys 2, D-22761 Hamburg, Germany
[4] Univ Genoa, Dipartimento Matemat, I-16146 Genoa, Italy
[5] Berg Univ Wuppertal, Fachgrp Math, D-42119 Wuppertal, Germany
关键词
QUANTUM-FIELD THEORY; LOCAL COVARIANCE; SPACE;
D O I
10.1007/s00220-014-2100-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The aim of this work is to complete our program on the quantization of connections on arbitrary principal U(1)-bundles over globally hyperbolic Lorentzian manifolds. In particular, we show that one can assign via a covariant functor to any such bundle an algebra of observables which separates gauge equivalence classes of connections. The C*-algebra we construct generalizes the usual CCR-algebras, since, contrary to the standard field-theoretic models, it is based on a presymplectic Abelian group instead of a symplectic vector space. We prove a no-go theorem according to which neither this functor, nor any of its quotients, satisfies the strict axioms of general local covariance. As a byproduct, we prove that a morphism violates the locality axiom if and only if a certain induced morphism of cohomology groups is non-injective. We show then that, fixing any principal U(1)-bundle, there exists a suitable category of subbundles for which a quotient of our functor yields a quantum field theory in the sense of Haag and Kastler. We shall provide a physical interpretation of this feature and we obtain some new insights concerning electric charges in locally covariant quantum field theory.
引用
收藏
页码:477 / 504
页数:28
相关论文
共 25 条
[1]   ROLE OF SPACE-TIME TOPOLOGY IN QUANTUM PHENOMENA - SUPERSELECTION OF CHARGE AND EMERGENCE OF NONTRIVIAL VACUA [J].
ASHTEKAR, A ;
SEN, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (03) :526-533
[2]  
Atiyah M.F., 1957, Trans. Amer. Math. Soc., V85, P181
[3]  
Bar C., 2012, QUANTUM FIELD THEORY, P183, DOI [10.1007/978-3-0348-0043-3_10, DOI 10.1007/978-3-0348-0043-3_10]
[4]  
Bar C, ARXIV13100738MATHPH
[5]  
Bar C., 2007, ARXIV08061036MATHDG
[6]  
Baum H., 2009, EICHFELDTHEORIE EINF
[7]   Quantized Abelian Principal Connections on Lorentzian Manifolds [J].
Benini, Marco ;
Dappiaggi, Claudio ;
Schenkel, Alexander .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (01) :123-152
[8]   Quantum Field Theory on Affine Bundles [J].
Benini, Marco ;
Dappiaggi, Claudio ;
Schenkel, Alexander .
ANNALES HENRI POINCARE, 2014, 15 (01) :171-211
[9]   Construction and uniqueness of the C*-Weyl algebra over a general pre-symplectic space [J].
Binz, E ;
Honegger, R ;
Rieckers, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (07) :2885-2907
[10]  
Bratteli O., 1996, EQUILIBRIUM STATES M, V2