Variational principles for Eigenvalues of self-adjoint operator functions

被引:34
作者
Eschwé, D
Langer, M
机构
[1] Vienna Tech Univ, Inst Anal & Tech Math, A-1040 Vienna, Austria
[2] Univ Bremen, D-28359 Bremen, Germany
基金
英国工程与自然科学研究理事会;
关键词
variational principle; operator function; Schur complement;
D O I
10.1007/s00020-002-1209-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Variational principles for eigenvalues of certain functions whose values are possibly unbounded self-adjoint operators T(lambda) are proved. A generalised Rayleigh functional is used that assigns to a vector x a zero of the function (T(lambda)x,x), where it is assumed that there exists at most one zero. Since Lhere need not exist a zero for all x, an index shift may occur. Using this variational principle, eigenvalues of linear and quadratic polynomials and eigenvalues of block operator matrices in a gap of the essential spectrum are characterised. Moreover, applications are given to an elliptic eigenvalue problem with degenerate weight, Dirac operators, strings in a medium with a viscous friction, and a Sturm-Liouville problem that is rational in the eigenvalue parameter.
引用
收藏
页码:287 / 321
页数:35
相关论文
共 25 条
[1]  
ABRAMOV YS, 1983, VARIATIONAL METHODS
[2]  
Adamjan A., 1995, J OPERAT THEOR, V33, P259
[3]   A spectral theory for a λ-rational Sturm-Liouville problem [J].
Adamjan, V ;
Langer, H ;
Langer, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 171 (02) :315-345
[4]   Spectral components of selfadjoint block operator matrices with unbounded entries [J].
Adamyan, V ;
Langer, H ;
Mennicken, R ;
Saurer, J .
MATHEMATISCHE NACHRICHTEN, 1996, 178 :43-80
[5]   2ND-ORDER ELLIPTIC-EQUATIONS WITH DEGENERATE WEIGHT [J].
ALLEGRETTO, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 107 (04) :989-998
[6]  
[Anonymous], 1982, MATH RES
[7]  
[Anonymous], 1988, TRANSLATIONS MATH MO
[8]   THE ESSENTIAL SPECTRUM OF SOME MATRIX OPERATORS [J].
ATKINSON, FV ;
LANGER, H ;
MENNICKEN, R ;
SHKALIKOV, AA .
MATHEMATISCHE NACHRICHTEN, 1994, 167 :5-20
[9]   Variational principles for real eigenvalues of self-adjoint operator pencils [J].
Binding, P ;
Eschwé, D ;
Langer, H .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2000, 38 (02) :190-206
[10]  
BINDING P, 2000, GLASNIK MAT, V35, P25