Quantum Corrections Based on the 2-D Schrodinger Equation for 3-D Finite Element Monte Carlo Simulations of Nanoscaled FinFETs

被引:36
作者
Lindberg, Jari [1 ]
Aldegunde, Manuel [1 ]
Nagy, Daniel [1 ]
Dettmer, Wulf G. [1 ]
Kalna, Karol [1 ]
Garcia-Loureiro, Antonio Jesus [2 ]
Peric, Djordje [1 ]
机构
[1] Swansea Univ, Coll Engn, Swansea SA2 8PP, W Glam, Wales
[2] Univ Santiago de Compostela, Ctr Invest Tecnoloxias Informac, Santiago De Compostela 15782, Spain
基金
英国工程与自然科学研究理事会;
关键词
FinFET; finite element method (FEM); Monte Carlo (MC) simulations; quantum effects; Schrodinger equation; IMPURITY SCATTERING; SURFACE-ROUGHNESS; MOBILITY; STATE;
D O I
10.1109/TED.2013.2296209
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Solutions of the 2-D Schrodinger equation across the channel using a finite element method have been implemented into a 3-D finite element (FE) ensemble Monte Carlo (MC) device simulation toolbox as quantum corrections. The 2-D FE Schrodinger equation-based quantum corrections are entirely calibration free and can accurately describe quantum confinement effects in arbitrary device cross sections. The 3-D FE quantum corrected MC simulation is based on the tetrahedral decomposition of the simulation domain and the 2-D Schrodinger equation is solved at prescribed transverse planes of the 3-D mesh in the transport direction. We apply the method to study output characteristics of a nonplanar nanoscaled MOSFET, a 10.7-nm gate length silicon-on-insulator FinFET, investigating < 100 > and < 110 > channel orientations. The results are then compared with those obtained from 3-D FE MC simulations with quantum corrections via the density gradient method showing very similar I - V characteristics but very different density distributions.
引用
收藏
页码:423 / 429
页数:7
相关论文
共 34 条
  • [1] 3D Finite Element Monte Carlo Simulations of Multigate Nanoscale Transistors
    Aldegunde, Manuel
    Jesus Garcia-Loureiro, Antonio
    Kalna, Karol
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2013, 60 (05) : 1561 - 1567
  • [2] QUANTUM CORRECTION TO THE EQUATION OF STATE OF AN ELECTRON-GAS IN A SEMICONDUCTOR
    ANCONA, MG
    IAFRATE, GJ
    [J]. PHYSICAL REVIEW B, 1989, 39 (13): : 9536 - 9540
  • [3] [Anonymous], 2011, COLLECTION FORTRAN C
  • [4] [Anonymous], 2012, International Technology Roadmap for Semiconductors (ITRS)
  • [5] [Anonymous], 2012, INTEL 22 NM TECHNOLO
  • [6] A 0.063 μm2 FinFET SRAM cell demonstration with conventional lithography using a novel integration scheme with aggressively scaled fin and gate pitch
    Basker, V. S.
    Standaert, T.
    Kawasaki, H.
    Yeh, C. -C.
    Maitra, K.
    Yamashita, T.
    Faltermeier, J.
    Adhikari, H.
    Jagannathan, H.
    Wang, J.
    Sunamura, H.
    Kanakasabapathy, S.
    Schmitz, S.
    Cummings, J.
    Inada, A.
    Lin, C. -H.
    Kulkarni, P.
    Zhu, Y.
    Kuss, J.
    Yamamoto, T.
    Kumar, A.
    Wahl, J.
    Yagishita, A.
    Edge, L. F.
    Kim, R. H.
    Mclellan, E.
    Holmes, S. J.
    Johnson, R. C.
    Levin, T.
    Demarest, J.
    Hane, M.
    Takayanagi, M.
    Colburn, M.
    Paruchuri, V. K.
    Miller, R. J.
    Bu, H.
    Doris, B.
    McHerron, D.
    Leobandung, E.
    O'Neill, J.
    [J]. 2010 SYMPOSIUM ON VLSI TECHNOLOGY, DIGEST OF TECHNICAL PAPERS, 2010, : 19 - +
  • [7] Burnett DS., 1987, FINITE ELEM ANAL DES
  • [8] Temperature-Oriented Mobility Measurement and Simulation to Assess Surface Roughness in Ultrathin-Gate-Oxide (∼1 nm) nMOSFETs and Its TEM Evidence
    Chen, Ming-Jer
    Chang, Li-Ming
    Kuang, Shin-Jiun
    Lee, Chih-Wei
    Hsieh, Shang-Hsun
    Wang, Chi-An
    Chang, Sou-Chi
    Lee, Chien-Chih
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2012, 59 (04) : 949 - 955
  • [9] Colinge JP, 2008, INTEGR CIRCUIT SYST, P1, DOI 10.1007/978-0-387-71752-4_1
  • [10] COMPARISON BETWEEN FINITE-ELEMENT METHODS AND SPECTRAL METHODS AS APPLIED TO BOUND-STATE PROBLEMS
    DUFF, M
    RABITZ, H
    ASKAR, A
    CAKMAK, A
    ABLOWITZ, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1980, 72 (03) : 1543 - 1559