Effects of mass transfer time relaxation parameters on condensation in a thermosyphon

被引:50
作者
Kim, Youngchul [1 ]
Choi, Jongwook [2 ]
Kim, Sungcho [2 ]
Zhang, Yuwen [3 ]
机构
[1] Sunchon Natl Univ, Grad Sch, Dept Aerosp Engn, Jeonnam 57922, South Korea
[2] Sunchon Natl Univ, Sch Mech & Aerosp Engn, Jeonnam 57922, South Korea
[3] Univ Missouri, Dept Mech & Aerosp Engn, Columbia, MO 65211 USA
关键词
Condensation; Evaporation; Heat pipe; Mass transfer time relaxation parameter; Phase change; Thermosyphon; HEAT-PIPE; NUMERICAL-SIMULATION; THERMAL PERFORMANCE; 2-PHASE FLOW; VOLUME;
D O I
10.1007/s12206-015-1151-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Mass transfer time relaxation parameters for condensation affect the amount of the mass transfer in the phase change. In the present study, a numerical investigation has been implemented with four different parameters for the condensation process in a thermosyphon, with the parameter of 0.1 for the evaporation process. The numerical results were compared with the experimental results to validate the numerical methods. When the mass transfer time relaxation parameter for the condensation was set to the value considering the density ratio out of the four parameters, the numerical result was in good agreement with the experimental result. This numerical process is expected to be used to predict the temperature distribution in the thermosyphon more accurately.
引用
收藏
页码:5497 / 5505
页数:9
相关论文
共 29 条
[1]   CFD modeling of flow and heat transfer in a thermosyphon [J].
Alizadehdakhel, Asghar ;
Rahimi, Masoud ;
Alsairafi, Ammar Abdulaziz .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2010, 37 (03) :312-318
[2]   EXPERIMENTAL INVESTIGATION AND COMPUTATIONAL FLUID DYNAMICS ANALYSIS OF A AIR COOLED CONDENSER HEAT PIPE [J].
Annamalai, Arul Selvan ;
Ramalingam, Velraj .
THERMAL SCIENCE, 2011, 15 (03) :759-772
[3]  
[Anonymous], THESIS
[4]  
[Anonymous], 2011, ANSYS Fluent User's Guide (Release 14.0)
[5]  
[Anonymous], 2011, ANSYS FLUENT UDF MAN
[6]   Thermal performance analysis of nanofluids in a thermosyphon heat pipe using CFD modeling [J].
Asmaie, L. ;
Haghshenasfard, M. ;
Mehrabani-Zeinabad, A. ;
Esfahany, M. Nasr .
HEAT AND MASS TRANSFER, 2013, 49 (05) :667-678
[7]   A CONTINUUM METHOD FOR MODELING SURFACE-TENSION [J].
BRACKBILL, JU ;
KOTHE, DB ;
ZEMACH, C .
JOURNAL OF COMPUTATIONAL PHYSICS, 1992, 100 (02) :335-354
[8]   Wetting of low-energy surfaces [J].
Churaev, N. V. ;
Sobolev, V. D. .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2007, 134-35 (15-23) :15-23
[9]   CFD modeling of all gas-liquid and vapor-liquid flow regimes predicted by the Baker chart [J].
De Schepper, Sandra C. K. ;
Heynderickx, Geraldine J. ;
Marin, Guy B. .
CHEMICAL ENGINEERING JOURNAL, 2008, 138 (1-3) :349-357
[10]   Modeling the evaporation of a hydrocarbon feedstock in the convection section of a steam cracker [J].
De Schepper, Sandra C. K. ;
Heynderickx, Geraldine J. ;
Marin, Guy B. .
COMPUTERS & CHEMICAL ENGINEERING, 2009, 33 (01) :122-132