Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

被引:157
作者
Oakes, Landon [1 ,4 ]
Westover, Andrew [1 ,4 ]
Mares, Jeremy W. [2 ]
Chatterjee, Shahana [1 ]
Erwin, William R. [3 ]
Bardhan, Rizia [3 ,4 ]
Weiss, Sharon M. [2 ,4 ]
Pint, Cary L. [1 ,4 ]
机构
[1] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA
[4] Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37235 USA
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
基金
美国国家科学基金会;
关键词
RAMAN-SPECTROSCOPY; GRAPHENE; GROWTH; BATTERY; ANODES;
D O I
10.1038/srep03020
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.
引用
收藏
页数:7
相关论文
共 35 条
[21]  
Schüth F, 2002, ADV MATER, V14, P629, DOI 10.1002/1521-4095(20020503)14:9<629::AID-ADMA629>3.0.CO
[22]  
2-B
[23]   Raman spectroscopy on amorphous carbon films [J].
Schwan, J ;
Ulrich, S ;
Batori, V ;
Ehrhardt, H ;
Silva, SRP .
JOURNAL OF APPLIED PHYSICS, 1996, 80 (01) :440-447
[24]   Materials for electrochemical capacitors [J].
Simon, Patrice ;
Gogotsi, Yury .
NATURE MATERIALS, 2008, 7 (11) :845-854
[25]   Chemical strategies to design textured materials: From microporous and mesoporous oxides to nanonetworks and hierarchical structures [J].
Soler-illia, GJD ;
Sanchez, C ;
Lebeau, B ;
Patarin, J .
CHEMICAL REVIEWS, 2002, 102 (11) :4093-4138
[26]   Scalable templated growth of graphene nanoribbons on SiC [J].
Sprinkle, M. ;
Ruan, M. ;
Hu, Y. ;
Hankinson, J. ;
Rubio-Roy, M. ;
Zhang, B. ;
Wu, X. ;
Berger, C. ;
de Heer, W. A. .
NATURE NANOTECHNOLOGY, 2010, 5 (10) :727-731
[27]   Graphene-Based Ultracapacitors [J].
Stoller, Meryl D. ;
Park, Sungjin ;
Zhu, Yanwu ;
An, Jinho ;
Ruoff, Rodney S. .
NANO LETTERS, 2008, 8 (10) :3498-3502
[28]   Micro-ultracapacitors with highly doped silicon nanowires electrodes [J].
Thissandier, Fleur ;
Pauc, Nicolas ;
Brousse, Thierry ;
Gentile, Pascal ;
Sadki, Said .
NANOSCALE RESEARCH LETTERS, 2013, 8 :1-5
[29]   Highly doped silicon nanowires based electrodes for micro-electrochemical capacitor applications [J].
Thissandier, Fleur ;
Le Comte, Annaig ;
Crosnier, Olivier ;
Gentile, Pascal ;
Bidan, Gerard ;
Hadji, Emmanuel ;
Brousse, Thierry ;
Sadki, Said .
ELECTROCHEMISTRY COMMUNICATIONS, 2012, 25 :109-111
[30]   Anodic electrode reaction of p-type silicon in 1-ethyl-3-methylimidazolium fluorohydrogenate room-temperature ionic liquid [J].
Tsuda, Tetsuya ;
Nohira, Toshiyuki ;
Arnezawa, Koji ;
Hachiya, Kan ;
Hagiwara, Rika ;
Raz, Ofer ;
Ein-Eli, Yair .
ELECTROCHIMICA ACTA, 2008, 53 (10) :3650-3655