Surface engineered porous silicon for stable, high performance electrochemical supercapacitors

被引:157
作者
Oakes, Landon [1 ,4 ]
Westover, Andrew [1 ,4 ]
Mares, Jeremy W. [2 ]
Chatterjee, Shahana [1 ]
Erwin, William R. [3 ]
Bardhan, Rizia [3 ,4 ]
Weiss, Sharon M. [2 ,4 ]
Pint, Cary L. [1 ,4 ]
机构
[1] Vanderbilt Univ, Dept Mech Engn, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Elect Engn & Comp Sci, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Dept Chem & Biomol Engn, Nashville, TN 37235 USA
[4] Vanderbilt Univ, Interdisciplinary Mat Sci Program, Nashville, TN 37235 USA
来源
SCIENTIFIC REPORTS | 2013年 / 3卷
基金
美国国家科学基金会;
关键词
RAMAN-SPECTROSCOPY; GRAPHENE; GROWTH; BATTERY; ANODES;
D O I
10.1038/srep03020
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Silicon materials remain unused for supercapacitors due to extreme reactivity of silicon with electrolytes. However, doped silicon materials boast a low mass density, excellent conductivity, a controllably etched nanoporous structure, and combined earth abundance and technological presence appealing to diverse energy storage frameworks. Here, we demonstrate a universal route to transform porous silicon (P-Si) into stable electrodes for electrochemical devices through growth of an ultra-thin, conformal graphene coating on the P-Si surface. This graphene coating simultaneously passivates surface charge traps and provides an ideal electrode-electrolyte electrochemical interface. This leads to 10-40X improvement in energy density, and a 2X wider electrochemical window compared to identically-structured unpassivated P-Si. This work demonstrates a technique generalizable to mesoporous and nanoporous materials that decouples the engineering of electrode structure and electrochemical surface stability to engineer performance in electrochemical environments. Specifically, we demonstrate P-Si as a promising new platform for grid-scale and integrated electrochemical energy storage.
引用
收藏
页数:7
相关论文
共 35 条
[1]   A Raman spectroscopy study of individual SiC nanowires [J].
Bechelany, Mikhael ;
Brioude, Arnaud ;
Cornu, David ;
Ferro, Gabriel ;
Miele, Philippe .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (06) :939-943
[2]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[3]  
Chmiola J, 2006, SCIENCE, V313, P1760, DOI 10.1126/science/1132195
[4]   Investigations on porous silicon as electrode material in electrochemical capacitors [J].
Desplobain, S. ;
Gautier, G. ;
Semai, J. ;
Ventura, L. ;
Roy, M. .
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 4 NO 6, 2007, 4 (06) :2180-+
[5]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[6]   Electrochemical etching of silicon in nonaqueous electrolytes containing hydrogen fluoride or fluoroborate [J].
Flake, JC ;
Rieger, MM ;
Schmid, GM ;
Kohl, PA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (05) :1960-1965
[7]   Porous and nanoporous semiconductors and emerging applications [J].
Foell, Helmut ;
Carstensen, Juergen ;
Frey, Stefan .
JOURNAL OF NANOMATERIALS, 2006, 2006
[8]   Formation and application of porous silicon [J].
Föll, H ;
Christophersen, M ;
Carstensen, J ;
Hasse, G .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2002, 39 (04) :93-141
[9]   The Chemistry and Applications of Metal-Organic Frameworks [J].
Furukawa, Hiroyasu ;
Cordova, Kyle E. ;
O'Keeffe, Michael ;
Yaghi, Omar M. .
SCIENCE, 2013, 341 (6149) :974-+
[10]   True Performance Metrics in Electrochemical Energy Storage [J].
Gogotsi, Y. ;
Simon, P. .
SCIENCE, 2011, 334 (6058) :917-918