A paradigm for data-driven predictive modeling using field inversion and machine learning

被引:366
|
作者
Parish, Eric J. [1 ]
Duraisamy, Karthik [1 ]
机构
[1] Univ Michigan, Dept Aerosp Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Data-driven modeling; Machine learning; Closure modeling; UNCERTAINTIES; CALIBRATION;
D O I
10.1016/j.jcp.2015.11.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We propose a modeling paradigm, termed field inversion and machine learning (FIML), that seeks to comprehensively harness data from sources such as high-fidelity simulations and experiments to aid the creation of improved closure models for computational physics applications. In contrast to inferring model parameters, this work uses inverse modeling to obtain corrective, spatially distributed functional terms, offering a route to directly address model-form errors. Once the inference has been performed over a number of problems that are representative of the deficient physics in the closure model, machine learning techniques are used to reconstruct the model corrections in terms of variables that appear in the closure model. These reconstructed functional forms are then used to augment the closure model in a predictive computational setting. As a first demonstrative example, a scalar ordinary differential equation is considered, wherein the model equation has missing and deficient terms. Following this, the methodology is extended to the prediction of turbulent channel flow. In both of these applications, the approach is demonstrated to be able to successfully reconstruct functional corrections and yield accurate predictive solutions while providing a measure of model form uncertainties. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:758 / 774
页数:17
相关论文
共 50 条
  • [41] Data-driven decarbonization framework with machine learning
    Jain, Ayush
    Padmanaban, Manikandan
    Hazra, Jagabondhu
    Guruprasad, Ranjini
    Godbole, Shantanu
    Syam, Heriansyah
    ENVIRONMENTAL DATA SCIENCE, 2024, 3
  • [42] Data-Driven Machine Learning Approach to Integrate Field Submittals in Project Scheduling
    Awada, Mohamad
    Srour, F. Jordan
    Srour, Issam M.
    JOURNAL OF MANAGEMENT IN ENGINEERING, 2021, 37 (01)
  • [43] Enhancing Supply Chain Management Efficiency: A Data-Driven Approach using Predictive Analytics and Machine Learning Algorithms
    Ghodake, Shamrao Parashram
    Malkar, Vinod Ramchandra
    Santosh, Kathari
    Jabasheela, L.
    Abdufattokhov, Shokhjakhon
    Gopi, Adapa
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (04) : 672 - 686
  • [44] Data-driven modeling of dislocation mobility from atomistics using physics-informed machine learning
    Tian, Yifeng
    Bagchi, Soumendu
    Myhill, Liam
    Po, Giacomo
    Martinez, Enrique
    Lin, Yen Ting
    Mathew, Nithin
    Perez, Danny
    NPJ COMPUTATIONAL MATERIALS, 2024, 10 (01)
  • [45] Machine Learning and Artificial Intelligence: A Paradigm Shift in Big Data-Driven Drug Design and Discovery
    Pasrija, Purvashi
    Jha, Prakash
    Upadhyaya, Pruthvi
    Khan, Mohd. Shoaib
    Chopra, Madhu
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2022, 22 (20) : 1692 - 1727
  • [46] Data-driven market segmentation in hospitality using unsupervised machine learning
    van Leeuwen, Rik
    Koole, Ger
    MACHINE LEARNING WITH APPLICATIONS, 2022, 10
  • [47] Machine Vision for Collaborative Robotics Using Synthetic Data-Driven Learning
    Camilo Martinez-Franco, Juan
    Alvarez-Martinez, David
    SERVICE ORIENTED, HOLONIC AND MULTI-AGENT MANUFACTURING SYSTEMS FOR INDUSTRY OF THE FUTURE, SOHOMA LATIN AMERICA 2021, 2021, 987 : 69 - 81
  • [48] Machine learning for metal additive manufacturing: Towards a physics-informed data-driven paradigm
    Guo, Shenghan
    Agarwal, Mohit
    Cooper, Clayton
    Tian, Qi
    Gao, Robert X.
    Grace, Weihong Guo
    Guo, Y. B.
    JOURNAL OF MANUFACTURING SYSTEMS, 2022, 62 : 145 - 163
  • [49] Data-driven predictions of shield attitudes using Bayesian machine learning
    Wang, Lai
    Pan, Qiujing
    Wang, Shuying
    Computers and Geotechnics, 2024, 166
  • [50] Prediction of dialysis adequacy using data-driven machine learning algorithms
    Liu, Yi-Chen
    Qing, Ji-Ping
    Li, Rong
    Chang, Juan
    Xu, Li-Xia
    RENAL FAILURE, 2024, 46 (02)