Understanding the role of metal and N species in M@NC catalysts for electrochemical CO2 reduction reaction

被引:57
作者
Liang, Manfen [1 ]
Liu, Yu [1 ]
Zhang, Jie [1 ]
Wang, Fangyuan [1 ]
Miao, Zhichao [1 ]
Diao, Lechen [1 ]
Mu, Jinglin [1 ]
Zhou, Jin [1 ]
Zhuo, Shuping [1 ]
机构
[1] Shandong Univ Technol, Sch Chem & Chem Engn, Zibo 255000, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2022年 / 306卷
关键词
M@NC; Metal species; N species; Active site; Electrochemical CO2 reduction; DOPED CARBON; CO2; ELECTROREDUCTION; ORGANIC FRAMEWORKS; EFFICIENT ELECTROCATALYSTS; ACTIVE-SITES; REDUCTION; DIOXIDE; NANOPARTICLES; PERFORMANCE; CONVERSION;
D O I
10.1016/j.apcatb.2022.121115
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical CO2 reduction reaction (CO2RR) that transforms CO2 to CO has attracted great interest. Transition metal nanoparticles encapsulated in nitrogen-doped carbon (M@NC) catalysts exhibit outstanding catalytic performance. However, the role of metal and N species in M@NC catalysts remains unclear. In this work, Co@C, Co@NC, Ni@C, and Ni@NC catalysts were achieved and employed in CO2RR. The Ni@NC catalyst exhibits an industry level current density of 220 mA cm(-2) and a high Faradaic efficiency of 98% for CO production at -0.87 V vs. RHE for 100 h. In addition, the N species, especially the pyrrolic-N in the shell of Ni@NC material provide active sites for adsorbing and activating CO2 molecules, and metal nanoparticles improve the electronic structure of N species, thereby decreasing their ability for radical attack (*COOH, *CO, and *H). Consequently, this work can guide the design of M@NC catalyst for CO2RR to CO.& nbsp;
引用
收藏
页数:12
相关论文
共 72 条
[1]   Ligand-Engineered Metal-Organic Frameworks for Electrochemical Reduction of Carbon Dioxide to Carbon Monoxide [J].
Al-Attas, Tareq A. ;
Marei, Nedal N. ;
Yong, Xue ;
Yasri, Nael G. ;
Thangadurai, Venkataraman ;
Shimizu, George ;
Siahrostami, Samira ;
Kibria, Md Golam .
ACS CATALYSIS, 2021, 11 (12) :7350-7357
[2]   Formate production through carbon dioxide hydrogenation with recombinant whole cell biocatalysts [J].
Alissandratos, Apostolos ;
Kim, Hye-Kyung ;
Easton, Christopher J. .
BIORESOURCE TECHNOLOGY, 2014, 164 :7-11
[3]   Active Sites of Au and Ag Nanoparticle Catalysts for CO2 Electroreduction to CO [J].
Back, Seoin ;
Yeom, Min Sun ;
Jung, Yousung .
ACS CATALYSIS, 2015, 5 (09) :5089-5096
[4]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[5]   Boosting CO2 Electroreduction on N,P-Co-doped Carbon Aerogels [J].
Chen, Chunjun ;
Sun, Xiaofu ;
Yan, Xupeng ;
Wu, Yahui ;
Liu, Huizhen ;
Zhu, Qinggong ;
Bediako, Bernard Baffour Asare ;
Han, Buxing .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (27) :11123-11129
[6]   CO2 Reduction to CO with 19% Efficiency in a Solar-Driven Gas Diffusion Electrode Flow Cell under Outdoor Solar Illumination [J].
Cheng, Wen-Hui ;
Richter, Matthias H. ;
Sullivan, Ian ;
Larson, David M. ;
Xiang, Chengxiang ;
Brunschwig, Bruce S. ;
Atwater, Harry A. .
ACS ENERGY LETTERS, 2020, 5 (02) :470-476
[7]   Enhancing effect of Fe-doping on the activity of nano Ni catalyst towards hydrogen evolution from NH3BH3 [J].
Cui, Cancan ;
Liu, Yanyan ;
Mehdi, Sehrish ;
Wen, Hao ;
Zhou, Benji ;
Li, Jinpeng ;
Li, Baojun .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 265
[8]   Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide [J].
Dai, Lei ;
Qin, Qing ;
Wang, Pei ;
Zhao, Xiaojing ;
Hu, Chengyi ;
Liu, Pengxin ;
Qin, Ruixuan ;
Chen, Mei ;
Ou, Daohui ;
Xu, Chaofa ;
Mo, Shiguang ;
Wu, Binghui ;
Fu, Gang ;
Zhang, Peng ;
Zheng, Nanfeng .
SCIENCE ADVANCES, 2017, 3 (09)
[9]   AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES [J].
DELLEY, B .
JOURNAL OF CHEMICAL PHYSICS, 1990, 92 (01) :508-517
[10]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764