Gold nanoparticles as a contrast agent for in vivo tumor imaging with photoacoustic tomography

被引:192
作者
Zhang, Q. [1 ]
Iwakuma, N. [2 ]
Sharma, P. [3 ]
Moudgil, B. M. [3 ]
Wu, C. [4 ]
McNeill, J. [4 ]
Jiang, H. [1 ]
Grobmyer, S. R. [2 ]
机构
[1] Univ Florida, Coll Engn, Dept Biomed Engn, Gainesville, FL 32611 USA
[2] Univ Florida, Dept Surg, Div Surg Oncol, Gainesville, FL 32610 USA
[3] Univ Florida, Mat Sci & Engn & Particle Engn Res Ctr, Gainesville, FL 32611 USA
[4] Clemson Univ, Dept Chem, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
MACROMOLECULAR DRUGS; NANOSHELLS; REDUCTION; DELIVERY; SURFACE; CITRATE; TISSUE; CELLS; MICE; SIZE;
D O I
10.1088/0957-4484/20/39/395102
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Photoacoustic tomography (PAT) is a rapidly emerging non-invasive imaging technology that integrates the merits of high optical contrast with high ultrasound resolution. The ability to quantitatively and non-invasively image nanoparticles has important implications for the development of nanoparticles as in vivo cancer diagnostic and therapeutic agents. In this study, the ability of systemically administered poly(ethylene glycol)-coated (PEGylated) gold nanoparticles as a contrast agent for in vivo tumor imaging with PAT has been evaluated. We demonstrate that gold nanoparticles (20 and 50 nm) have high photoacoustic contrast as compared to mouse tissue ex vivo. Gold nanoparticles can be visualized in mice in vivo following subcutaneous administration using PAT. Following intravenous administration of PEGylated gold nanoparticles to tumor-bearing mice, accumulation of gold nanoparticles in tumors can be effectively imaged with PAT. With gold nanoparticles as a contrast agent, PAT has important potential applications in the image guided therapy of superficial tumors such as breast cancer, melanoma and Merkel cell carcinoma.
引用
收藏
页数:8
相关论文
共 32 条
[1]   Gold nanoparticles as a versatile platform for optimizing physicochemical parameters for targeted drug delivery [J].
Bergen, Jamie M. ;
Von Recum, Horst A. ;
Goodman, Thomas T. ;
Massey, Archna P. ;
Pun, Suzie H. .
MACROMOLECULAR BIOSCIENCE, 2006, 6 (07) :506-516
[2]   Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity [J].
Connor, EE ;
Mwamuka, J ;
Gole, A ;
Murphy, CJ ;
Wyatt, MD .
SMALL, 2005, 1 (03) :325-327
[3]   Bioconjugated gold nanoparticles as a molecular based contrast agent: Implications for imaging of deep tumors using optoacoustic tomography [J].
Copland, JA ;
Eghtedari, M ;
Popov, VL ;
Kotov, N ;
Mamedova, N ;
Motamedi, M ;
Oraevsky, AA .
MOLECULAR IMAGING AND BIOLOGY, 2004, 6 (05) :341-349
[4]   Emerging implications of nanotechnology on cancer diagnostics and therapeutics [J].
Cuenca, Alex G. ;
Jiang, Huabei ;
Hochwald, Steven N. ;
Delano, Matthew ;
Cance, William G. ;
Grobmyer, Stephen R. .
CANCER, 2006, 107 (03) :459-466
[5]   PEGylated Gold Nanoparticles Conjugated to Monoclonal F19 Antibodies as Targeted Labeling Agents for Human Pancreatic Carcinoma Tissue [J].
Eck, Wolfgang ;
Craig, Gary ;
Sigdel, Aruna ;
Ritter, Gerd ;
Old, Lloyd J. ;
Tang, Laura ;
Brennan, Murray F. ;
Allen, Peter J. ;
Mason, Michael D. .
ACS NANO, 2008, 2 (11) :2263-2272
[6]  
Frens G., 1973, Nat. Phys. Sci, V241, P848
[7]   Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy [J].
Gobin, Andre M. ;
Lee, Min Ho ;
Halas, Naomi J. ;
James, William D. ;
Drezek, Rebekah A. ;
West, Jennifer L. .
NANO LETTERS, 2007, 7 (07) :1929-1934
[9]   The use of gold nanoparticles to enhance radiotherapy in mice [J].
Hainfeld, JF ;
Slatkin, DN ;
Smilowitz, HM .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (18) :N309-N315
[10]   Determination of size and concentration of gold nanoparticles from UV-Vis spectra [J].
Haiss, Wolfgang ;
Thanh, Nguyen T. K. ;
Aveyard, Jenny ;
Fernig, David G. .
ANALYTICAL CHEMISTRY, 2007, 79 (11) :4215-4221