homology of digraphs;
paths in digraphs;
homotopy theory for digraphs;
Eilenberg-Steenrod axioms;
SIMPLICIAL COMPLEXES;
DIFFERENTIAL-CALCULUS;
CUBIC MANIFOLDS;
HOMOTOPY-THEORY;
GAUGE-THEORY;
GRAPHS;
COHOMOLOGY;
ALGEBRAS;
LATTICES;
PATTERNS;
D O I:
10.4310/HHA.2018.v20.n2.a9
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In the paper we continue the investigation of the path homology theory of digraphs that was constructed in our previous papers. We prove basic theorems that are similar to the theorems of classical algebraic topology and introduce several natural constructions of digraphs which are very helpful to investigate the path homology theory. We describe relation of our results to the Eilenberg-Steenrod axiomatic of homology theory.
机构:
Johns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USAJohns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
Carranza, Daniel
Doherty, Brandon
论文数: 0引用数: 0
h-index: 0
机构:
Florida State Univ, Dept Math, 208 Love Bldg,1017 Acad Way, Tallahassee, FL 32306 USAJohns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
Doherty, Brandon
Kapulkin, Krzyzstof
论文数: 0引用数: 0
h-index: 0
机构:
Univ Western Ontario, Dept Math, 1151 Richmond St, London, ON N6A 5B7, CanadaJohns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
Kapulkin, Krzyzstof
Opie, Morgan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Math, 520 Portola Plaza, Los Angeles, CA 90095 USAJohns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
Opie, Morgan
Sarazola, Maru
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Sch Math, 206 Church St SE, Minneapolis, MN 55455 USAJohns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA
Sarazola, Maru
Wong, Liang Ze
论文数: 0引用数: 0
h-index: 0
机构:
ASTAR, Inst High Performance Comp IHPC, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, SingaporeJohns Hopkins Univ, Dept Math, 3400 N Charles St, Baltimore, MD 21218 USA