ON THE PATH HOMOLOGY THEORY OF DIGRAPHS AND EILENBERG-STEENROD AXIOMS

被引:29
|
作者
Grigoryan, Alexander [1 ,2 ]
Jimenez, Rolando [3 ]
Muranov, Yuri [4 ]
Yau, Shing-Tung [5 ]
机构
[1] Univ Bielefeld, Math Dept, Postfach 100131, D-33501 Bielefeld, Germany
[2] Russian Acad Sci, Inst Control Sci, Moscow, Russia
[3] UNAM, Inst Matemat, Unidad Oaxaca, Leon 2, Centro 68000, Oaxaca, Mexico
[4] Univ Warmia & Mazury, Fac Math & Comp Sci, Sloneczna 54 St, PL-10710 Olsztyn, Poland
[5] Harvard Univ, Dept Math, One Oxford St, Cambridge, MA 02138 USA
关键词
homology of digraphs; paths in digraphs; homotopy theory for digraphs; Eilenberg-Steenrod axioms; SIMPLICIAL COMPLEXES; DIFFERENTIAL-CALCULUS; CUBIC MANIFOLDS; HOMOTOPY-THEORY; GAUGE-THEORY; GRAPHS; COHOMOLOGY; ALGEBRAS; LATTICES; PATTERNS;
D O I
10.4310/HHA.2018.v20.n2.a9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper we continue the investigation of the path homology theory of digraphs that was constructed in our previous papers. We prove basic theorems that are similar to the theorems of classical algebraic topology and introduce several natural constructions of digraphs which are very helpful to investigate the path homology theory. We describe relation of our results to the Eilenberg-Steenrod axiomatic of homology theory.
引用
收藏
页码:179 / 205
页数:27
相关论文
共 18 条
  • [1] Symplectic homology and the Eilenberg-Steenrod axioms
    Cieliebak, Kai
    Oancea, Alexandru
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2018, 18 (04): : 1953 - 2130
  • [2] Directed Homology Theories and Eilenberg-Steenrod Axioms
    Jérémy Dubut
    Eric Goubault
    Jean Goubault-Larrecq
    Applied Categorical Structures, 2017, 25 : 775 - 807
  • [3] Directed Homology Theories and Eilenberg-Steenrod Axioms
    Dubut, Jeremy
    Goubault, Eric
    Goubault-Larrecq, Jean
    APPLIED CATEGORICAL STRUCTURES, 2017, 25 (05) : 775 - 807
  • [4] A simplification of the Eilenberg-Steenrod axioms, 2
    Thurey, V
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 129 (02) : 207 - 213
  • [6] On the path homology of Cayley digraphs and covering digraphs
    Di, Shaobo
    Ivanov, Sergei O.
    Mukoseev, Lev
    Zhang, Mengmeng
    JOURNAL OF ALGEBRA, 2024, 653 : 156 - 199
  • [7] AXIOMS FOR LOCAL HOMOLOGY THEORY
    BRAHANA, TR
    DUKE MATHEMATICAL JOURNAL, 1958, 25 (03) : 381 - 399
  • [8] Cofibration category of digraphs for path homology
    Carranza, Daniel
    Doherty, Brandon
    Kapulkin, Krzyzstof
    Opie, Morgan
    Sarazola, Maru
    Wong, Liang Ze
    ALGEBRAIC COMBINATORICS, 2024, 7 (02):
  • [9] ON THE STEENROD-HOMOLOGY THEORY OF COMPACT SPACES
    INASSARIDZE, H
    MICHIGAN MATHEMATICAL JOURNAL, 1991, 38 (03) : 323 - 338