General spin and pseudospin symmetries of the Dirac equation

被引:11
作者
Alberto, P. [1 ]
Malheiro, M. [2 ]
Frederico, T. [2 ]
de Castro, A. [3 ]
机构
[1] Univ Coimbra, Dept Phys, CFisUC, P-3004516 Coimbra, Portugal
[2] DCTA, Inst Tecnol Aeronaut, Sao Paulo, Brazil
[3] Univ Estadual Paulista, Dept Fis & Quim, BR-12516410 Sao Paulo, Brazil
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 06期
基金
巴西圣保罗研究基金会;
关键词
Bells;
D O I
10.1103/PhysRevA.92.062137
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the 1970s Smith and Tassie [G. B. Smith and L. J. Tassie, Ann. Phys. (NY) 65, 352 (1971)] and Bell and Ruegg [J. S. Bell and H. Ruegg, Nucl. Phys. B 98, 151 (1975); 104, 546 (1976)] independently found SU(2) symmetries of the Dirac equation with scalar and vector potentials. These symmetries, known as pseudospin and spin symmetries, have been extensively researched and applied to several physical systems. Twenty years after, in 1997, the pseudospin symmetry was revealed by Ginocchio [J. N. Ginocchio, Phys. Rev. Lett. 78, 436 (1997)] as a relativistic symmetry of the atomic nuclei when it is described by relativistic mean-field hadronic models. The main feature of these symmetries is the suppression of the spin-orbit coupling either in the upper or lower components of the Dirac spinor, thereby turning the respective second-order equations into Schrodinger-like equations, i.e, without a matrix structure. In this paper we propose a generalization of these SU(2) symmetries for potentials in the Dirac equation with several Lorentz structures, which also allow for the suppression of the matrix structure of the second-order equation of either the upper or lower components of the Dirac spinor. We derive the general properties of those potentials and list some possible candidates, which include the usual spin-pseudospin potentials, and also two-and one-dimensional potentials. An application for a particular physical system in two dimensions, electrons in graphene, is suggested.
引用
收藏
页数:4
相关论文
共 17 条
[1]   Relativistic pseudospin and spin symmetries in physical systems - recent results [J].
Alberto, P. ;
Castro, A. ;
Fiolhais, M. ;
Lisboa, R. ;
Malheiro, M. .
2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
[2]   Spin and pseudospin symmetries and the equivalent spectra of relativistic spin-1/2 and spin-0 particles [J].
Alberto, P. ;
de Castro, A. S. ;
Malheiro, M. .
PHYSICAL REVIEW C, 2007, 75 (04)
[3]   On the relativistic L-S coupling [J].
Alberto, P. ;
Fiolhais, M. ;
Oliveira, M. .
European Journal of Physics, 1998, 19 (06) :553-562
[4]   Isospin asymmetry in the pseudospin dynamical symmetry [J].
Alberto, P ;
Fiolhais, M ;
Malheiro, M ;
Delfino, A ;
Chiapparini, M .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5015-5018
[5]  
BELL JS, 1976, NUCL PHYS B, V104, P546
[6]   DIRAC EQUATIONS WITH AN EXACT HIGHER SYMMETRY [J].
BELL, JS ;
RUEGG, H .
NUCLEAR PHYSICS B, 1975, 98 (01) :151-153
[7]   Spin and pseudospin symmetries in the Dirac equation with central Coulomb potentials [J].
de Castro, A. S. ;
Alberto, P. .
PHYSICAL REVIEW A, 2012, 86 (03)
[8]   Relating pseudospin and spin symmetries through charge conjugation and chiral transformations: The case of the relativistic harmonic oscillator [J].
de Castro, A. S. t ;
Alberto, P. ;
Lisboa, R. ;
Malheiro, M. .
PHYSICAL REVIEW C, 2006, 73 (05)
[9]   Pseudospin as a relativistic symmetry [J].
Ginocchio, JN .
PHYSICAL REVIEW LETTERS, 1997, 78 (03) :436-439
[10]   Relativistic symmetries in nuclei and hadrons [J].
Ginocchio, JN .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 414 (4-5) :165-261