Self-Heating and Cooling of Active Plasmonic Waveguides

被引:16
作者
Vyshnevyy, Andrey A. [1 ]
Fedyanin, Dmitry Yu. [1 ]
机构
[1] Moscow Inst Phys & Technol, Lab Nanoopt & Plasmon, Dolgoprudnyi 141700, Russia
来源
ACS PHOTONICS | 2016年 / 3卷 / 01期
基金
俄罗斯科学基金会;
关键词
heat transport; active plasmonics; surface plasmon amplification; electrical pumping; self-heating; temperature control; DOUBLE-HETEROSTRUCTURE LASERS; ELECTRICAL INJECTION; DIODE; INTERCONNECTS; CONFINEMENT; ABSORPTION; EMISSION; SILICON; FUTURE;
D O I
10.1021/acsphotonics.5b00449
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Loss compensation in plasmonic nanostructures gives a possibility to avoid problems with strong absorption in the metal and design deep-subwavelength optical components for practical applications. At the same time, pumping required for creation of population inversion produces a huge amount of waste heat, which can significantly increase the device temperature and degrade its performance. Eventually, self-heating is becoming a severe problem for active plasmonics, since it limits the maximum achievable optical gain. Here we report a comprehensive study of heat generation and transport in electrically pumped active plasmonic waveguides, in which the SPP propagation losses are compensated by gain in the adjacent semiconductor and present a strategy for their efficient cooling.
引用
收藏
页码:51 / 57
页数:7
相关论文
共 45 条
[1]   Double heterostructure lasers: Early days and future perspectives [J].
Alferov, Z .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2000, 6 (06) :832-840
[2]  
[Anonymous], SEMICONDUCTOR DEVICE
[3]   LOW-THRESHOLD LONG-WAVE LASERS (LAMBDA = 3.0-3.6 MU-M) BASED ON III-V ALLOYS [J].
AYDARALIEV, M ;
ZOTOVA, NV ;
KARANDASHOV, SA ;
MATVEEV, BA ;
STUS, NM ;
TALALAKIN, GN .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1993, 8 (08) :1575-1580
[4]  
Berini P., 2011, NAT PHOTONICS, V6, P16
[5]   Fermi-level pinning position at the Au-InAs interface determined using ballistic electron emission microscopy [J].
Bhargava, S ;
Blank, HR ;
Narayanamurti, V ;
Kroemer, H .
APPLIED PHYSICS LETTERS, 1997, 70 (06) :759-761
[6]   Channel plasmon-polariton guiding by subwavelength metal grooves [J].
Bozhevolnyi, SI ;
Volkov, VS ;
Devaux, E ;
Ebbesen, TW .
PHYSICAL REVIEW LETTERS, 2005, 95 (04)
[7]   APPLIED PHYSICS The Case for Plasmonics [J].
Brongersma, Mark L. ;
Shalaev, Vladimir M. .
SCIENCE, 2010, 328 (5977) :440-441
[8]   CONCENTRATION-DEPENDENT ABSORPTION AND SPONTANEOUS EMISSION OF HEAVILY DOPED GAAS [J].
CASEY, HC ;
STERN, F .
JOURNAL OF APPLIED PHYSICS, 1976, 47 (02) :631-643
[9]   Plasmonic interconnects versus conventional interconnects: a comparison of latency, crosstalk and energy costs [J].
Conway, J. A. ;
Sahni, S. ;
Szkopek, T. .
OPTICS EXPRESS, 2007, 15 (08) :4474-4484
[10]   A hybrid plasmonic semiconductor laser [J].
Costantini, D. ;
Greusard, L. ;
Bousseksou, A. ;
De Wilde, Y. ;
Habert, B. ;
Marquier, F. ;
Greffet, J. -J. ;
Lelarge, F. ;
Decobert, J. ;
Duan, G. -H. ;
Colombelli, R. .
APPLIED PHYSICS LETTERS, 2013, 102 (10)