Application of Kelvin's theory for structural assessment of FG rotating cylindrical shell: Vibration control

被引:6
作者
Khadimallah, Mohamed A. [1 ,2 ]
Hussain, Muzamal [3 ]
Harbaoui, Imene [4 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Civil Engn Dept, Coll Engn, BP 655, Al Kharj 16273, Saudi Arabia
[2] Univ Carthage, Polytech Sch Tunisia, Lab Syst & Appl Mech, Tunis, Tunisia
[3] Govt Coll Univ Faisalabad, Dept Math, Faisalabad 38000, Pakistan
[4] Univ Tunis EI Manar ENIT, Lab Appl Mech & Engn LR MAI, BP37, Tunis 1002, Tunisia
关键词
clamped-free; Kelvin's theory; natural frequency; edge condition; functionally graded; REINFORCED COMPOSITE PLATE; BUCKLING ANALYSIS; FREQUENCY-ANALYSIS; ELEMENT;
D O I
10.12989/acc.2020.10.6.499
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In current study, utilizing the Kelvin's theory with polynomial, exponential and trigonometric volume fraction laws for functionally graded cylindrical shell vibrations. Effects of different parameters for ratios of lengthand height-to-radius and angular speed versus fundamental natural frequencies been determined for two categories of cylindrical shells with clamped-free edge condition. By increasing different value of height-to-radius ratio, the resulting backward and forward frequencies increase and frequencies decrease on increasing length-to-radius ratio. Moreover, on increasing the rotating speed, the backward frequencies increases and forward frequencies decreases. The frequencies are same when the cylinder is stationary. The frequencies increases and decreases on changing the constituent materials. The frequency results are verified with the earlier literature for the applicability of present model.
引用
收藏
页码:499 / 507
页数:9
相关论文
共 57 条
[1]  
Ahmad M., 2009, EUROP J SCI RES, V36, P184, DOI [10.1007/s00707-009-0141-z, DOI 10.1007/S00707-009-0141-Z]
[2]   Agglomerated SiO2 nanoparticles reinforced-concrete foundations based on higher order shear deformation theory: Vibration analysis [J].
Alijani, Meysam ;
Bidgoli, Mahmood Rabani .
ADVANCES IN CONCRETE CONSTRUCTION, 2018, 6 (06) :585-610
[3]  
Bryan G.H., 1890, Proceedings of the Cambridge Philisophical Society, V7, P101
[4]   VIBRATIONS OF HIGH-SPEED ROTATING SHELLS WITH CALCULATIONS FOR CYLINDRICAL-SHELLS [J].
CHEN, Y ;
ZHAO, HB ;
SHEN, ZP ;
GRIEGER, I ;
KROPLIN, BH .
JOURNAL OF SOUND AND VIBRATION, 1993, 160 (01) :137-160
[5]   ANALYSIS OF A CYLINDRICAL-SHELL VIBRATING IN A CYLINDRICAL FLUID REGION [J].
CHUNG, H ;
TURULA, P ;
MULCAHY, TM ;
JENDRZEJCZYK, JA .
NUCLEAR ENGINEERING AND DESIGN, 1981, 63 (01) :109-120
[6]   The role of slenderness on the seismic behavior of ground-supported cylindrical silos [J].
Demir, Aysegul Durmus ;
Livaoglu, Ramazan .
ADVANCES IN CONCRETE CONSTRUCTION, 2019, 7 (02) :65-74
[7]  
Di Taranto R.A., 1964, J APPL MECH, V31, P700, DOI 10.1115/1.3629733
[8]   Free vibration of a partially liquid-filled and submerged, horizontal cylindrical shell [J].
Ergin, A ;
Temarel, P .
JOURNAL OF SOUND AND VIBRATION, 2002, 254 (05) :951-965
[9]   HARMONIC RESPONSE OF ROTATING CYLINDRICAL-SHELLS [J].
FOX, CHJ ;
HARDIE, DJW .
JOURNAL OF SOUND AND VIBRATION, 1985, 101 (04) :495-510
[10]  
Ghosh A., 1997, AM CERAM TRANSAC, V76, P171