Solar-driven CO2 conversion promoted by MOF - on - MOF homophase junction

被引:29
作者
Yu, Yan [2 ]
Li, Shuqi [1 ]
Huang, Lu [1 ]
Yu, Jie [3 ]
Zhang, Haiyan [1 ]
Song, Shuang [1 ]
Zeng, Tao [1 ]
机构
[1] Zhejiang Univ Technol, Coll Environm, Key Lab Microbial Technol Ind Pollut Control Zhej, Hangzhou 310032, Peoples R China
[2] Ningbo Univ, Coll Sci & Technol, Ningbo 315212, Peoples R China
[3] China Jiliang Univ, Coll Qual & Safety Engn, Dept Environm Engn, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
MOF-on-MOF; Phase junction; Photocatalysts; CO2; conversion; METAL-ORGANIC FRAMEWORK; FORMIC-ACID; PHOTOCATALYST; REDUCTION; NANOCOMPOSITES;
D O I
10.1016/j.catcom.2020.106270
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We herein reported the first case of successfully synthesizing homologous Ti(IV) - based metal-organic frameworks (MOFs) junction, comprising NH2-MIL-125 core and NTU-9 layer, via a MOF-on-MOF strategy. Benefiting from the core-shell structural advantages and the homophase type II junction effect, the obtained NH2-MIL-125@NTU-9 hybrids exhibit accelerated reaction kinetics and enhanced electron transfer behaviour in the solar-driven CO2 reduction. The quantum efficiency of formate production at 430 nm (0.67%) and product selectivity (94.47%) over NH2-MIL-125@NTU-9 far surpass those of the pure NH2-MIL-125 (0.13%, 88.56%) and NTU-9 (0.16%, 89.26%), which is among the highest performances of MOFs reported previously.
引用
收藏
页数:6
相关论文
共 26 条
[1]   Phase junction CdS: High efficient and stable photocatalyst for hydrogen generation [J].
Ai, Zizheng ;
Zhao, Gang ;
Zhong, Yueyao ;
Shao, Yongliang ;
Huang, Baibiao ;
Wu, Yongzhong ;
Hao, Xiaopeng .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 221 :179-186
[2]   In Situ Grown Monolayer N-Doped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO2 Reduction [J].
Bie, Chuanbiao ;
Zhu, Bicheng ;
Xu, Feiyan ;
Zhang, Liuyang ;
Yu, Jiaguo .
ADVANCED MATERIALS, 2019, 31 (42)
[3]   Maximizing the Photocatalytic Activity of Metal-Organic Frameworks with Aminated-Functionalized Linkers: Substoichiometric Effects in MIL-125-NH2 [J].
Chambers, Matthew B. ;
Wang, Xia ;
Ellezam, Laura ;
Ersen, Ovidiu ;
Fontecave, Marc ;
Sanchez, Clement ;
Rozes, Laurence ;
Mellot-Draznieks, Caroline .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (24) :8222-8228
[4]   Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst [J].
Cheng, Lin ;
Chen, Qian ;
Li, Juan ;
Liu, Hong .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 267
[5]   CO2 capture and photocatalytic reduction using bifunctional TiO2/MOF nanocomposites under UV-vis irradiation [J].
Crake, Angus ;
Christoforidis, Konstantinos C. ;
Kafizas, Andreas ;
Zafeiratos, Spyridon ;
Petit, Camille .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 210 :131-140
[6]   Synergistic Doping and Intercalation: Realizing Deep Phase Modulation on MoS2 Arrays for High-Efficiency Hydrogen Evolution Reaction [J].
Deng, Shengjue ;
Luo, Mi ;
Ai, Changzhi ;
Zhang, Yan ;
Liu, Bo ;
Huang, Lei ;
Jiang, Zheng ;
Zhang, Qinghua ;
Gu, Lin ;
Lin, Shiwei ;
Wang, Xiuli ;
Yu, Lei ;
Wen, Jianguo ;
Wang, Jiaao ;
Pan, Guoxiang ;
Xia, Xinhui ;
Tu, Jiangping .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (45) :16289-16296
[7]   A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance [J].
Di, Tingmin ;
Zhu, Bicheng ;
Cheng, Bei ;
Yu, Jiaguo ;
Xu, Jingsan .
JOURNAL OF CATALYSIS, 2017, 352 :532-541
[8]   Understanding Selectivity for the Electrochemical Reduction of Carbon Dioxide to Formic Acid and Carbon Monoxide on Metal Electrodes [J].
Feaster, Jeremy T. ;
Shi, Chuan ;
Cave, Etosha R. ;
Hatsukade, Tom T. ;
Abram, David N. ;
Kuhl, Kendra P. ;
Hahn, Christopher ;
Norskov, Jens K. ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2017, 7 (07) :4822-4827
[9]   A p-type Ti( IV)-based metal-organic framework with visible-light photo-response [J].
Gao, Junkuo ;
Miao, Jianwei ;
Li, Pei-Zhou ;
Teng, Wen Yuan ;
Yang, Ling ;
Zhao, Yanli ;
Liu, Bin ;
Zhang, Qichun .
CHEMICAL COMMUNICATIONS, 2014, 50 (29) :3786-3788
[10]   Preparation of nanocomposites of polyaniline and inorganic semiconductors [J].
Godovsky, DY ;
Varfolomeev, AE ;
Zaretsky, DF ;
Chandrakanthi, RLN ;
Kündig, A ;
Weder, C ;
Caseri, W .
JOURNAL OF MATERIALS CHEMISTRY, 2001, 11 (10) :2465-2469