Verification of an analytic fit for the vortex core profile in superfluid Fermi gases

被引:4
作者
Verhelst, Nick [1 ]
Klimin, Serghei [1 ,2 ]
Tempere, Jacques [1 ,3 ]
机构
[1] Univ Antwerp, TQC, Univ Pl 1, B-2610 Antwerp, Belgium
[2] State Univ Moldova, Dept Theoret Phys, Kishinev, Moldova
[3] Harvard Univ, Lyman Lab Phys, Cambridge, MA 02138 USA
来源
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS | 2017年 / 533卷
关键词
Vortex structure; Imbalanced Fermi gases; Effective field theory; BOSE-EINSTEIN CONDENSATE; BCS-BEC CROSSOVER; TEMPERATURE; VORTICES;
D O I
10.1016/j.physc.2016.06.020
中图分类号
O59 [应用物理学];
学科分类号
摘要
A characteristic property of superfluidity and -conductivity is the presence of quantized vortices in rotating systems. To study the BEC-BCS crossover the two most common methods are the Bogoliubov-De Gennes theory and the usage of an effective field theory. In order to simplify the calculations for one vortex, it is often assumed that the hyperbolic tangent yields a good approximation for the vortex structure. The combination of a variational vortex structure, together with cylindrical symmetry yields analytic (or numerically simple) expressions. The focus of this article is to investigate to what extent this analytic fit truly reflects the vortex structure throughout the BEC-BCS crossover at finite temperatures. The vortex structure will be determined using the effective field theory presented in [Eur. Phys. Journal B 88, 122 (2015)] and compared to the variational analytic solution. By doing this it is possible to see where these two structures agree, and where they differ. This comparison results in a range of applicability where the hyperbolic tangent will be a good fit for the vortex structure. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:96 / 100
页数:5
相关论文
共 30 条
[1]   Observation of vortex lattices in Bose-Einstein condensates [J].
Abo-Shaeer, JR ;
Raman, C ;
Vogels, JM ;
Ketterle, W .
SCIENCE, 2001, 292 (5516) :476-479
[2]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[3]   Vortex state in superfluid trapped Fermi gases at zero temperature [J].
Bruun, GM ;
Viverit, L .
PHYSICAL REVIEW A, 2001, 64 (06) :1-6
[4]   Time-Dependent Density Functional Theory and the Real-Time Dynamics of Fermi Superfluids [J].
Bulgac, Aurel .
ANNUAL REVIEW OF NUCLEAR AND PARTICLE SCIENCE, VOL 63, 2013, 63 :97-121
[5]   Ground-state description of a single vortex in an atomic Fermi gas: From BCS to Bose-Einstein condensation [J].
Chien, CC ;
He, Y ;
Chen, QJ ;
Levin, K .
PHYSICAL REVIEW A, 2006, 73 (04)
[6]   Rotating trapped Bose-Einstein condensates [J].
Fetter, Alexander L. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :647-691
[7]   CALCULATION OF PARTITION FUNCTIONS [J].
HUBBARD, J .
PHYSICAL REVIEW LETTERS, 1959, 3 (02) :77-78
[8]   Finite-temperature effective field theory for dark solitons in superfluid Fermi gases [J].
Klimin, S. N. ;
Tempere, J. ;
Devreese, J. T. .
PHYSICAL REVIEW A, 2014, 90 (05)
[9]   Extension of the Ginzburg-Landau approach for ultracold Fermi gases below a critical temperature [J].
Klimin, S. N. ;
Tempere, J. ;
Devreese, J. T. .
PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2014, 503 :136-139
[10]   Finite temperature effective field theory and two-band superfluidity in Fermi gases [J].
Klimin, Serghei N. ;
Tempere, Jacques ;
Lombardi, Giovanni ;
Devreese, Jozef T. .
EUROPEAN PHYSICAL JOURNAL B, 2015, 88 (05)