On the physical interpretation of non-metricity in Brans-Dicke gravity

被引:3
作者
Lobo, Iarley P. [1 ]
机构
[1] Univ Fed Paraiba, Dept Fis, C Postal 5008, BR-58051970 Joao Pessoa, Paraiba, Brazil
关键词
Brans-Dicke theory; frame transformations; Weyl geometry; EINSTEIN FRAME; MACHS PRINCIPLE; JORDAN; SINGULARITIES; INVARIANCE;
D O I
10.1142/S0219887818501384
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Brans-Dicke theory is described by an action that allows the so-called frame transformation, which replaces the non-minimal coupling between the scalar field and the curvature by a coupling between the scalar field and matter fields. In this paper, we describe how the viewpoint that they are physically equivalent has a geometrical counterpart in the framework of Weyl integrable geometry. This way, Dicke's interpretation in terms of running units is a physical manifestation of the non-metricity tensor.
引用
收藏
页数:9
相关论文
共 26 条
  • [1] From Brans-Dicke gravity to a geometrical scalar-tensor theory
    Almeida, T. S.
    Pucheu, M. L.
    Romero, C.
    Formiga, J. B.
    [J]. PHYSICAL REVIEW D, 2014, 89 (06):
  • [2] [Anonymous], ARXIV170701784GRQC
  • [3] On the embedding of Weyl manifolds
    Avalos, R.
    Dahia, F.
    Romero, C.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2017, 58 (01)
  • [4] Correspondence of F(R) gravity singularities in Jordan and Einstein frames
    Bahamonde, Sebastian
    Odintsov, S. D.
    Oikonomou, V. K.
    Wright, Matthew
    [J]. ANNALS OF PHYSICS, 2016, 373 : 96 - 114
  • [5] Weyl relativity: a novel approach to Weyl's ideas
    Barcelo, Carlos
    Carballo-Rubio, Raul
    Garay, Luis J.
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (06):
  • [6] Brans-Dicke theory: Jordan versus Einstein frame
    Bhadra, A.
    Sarkar, K.
    Datta, D. P.
    Nandi, K. K.
    [J]. MODERN PHYSICS LETTERS A, 2007, 22 (05) : 367 - 375
  • [7] Fresh look at the scalar-tensor theory of gravity in Jordan and Einstein frames from undiscussed standpoints
    Bhattacharya, Krishnakanta
    Majhi, Bibhas Ranjan
    [J]. PHYSICAL REVIEW D, 2017, 95 (06)
  • [8] On the disformal invariance of the Dirac equation
    Bittencourt, Eduardo
    Lobo, Iarley P.
    Carvalho, Gabriel G.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (18)
  • [9] MACHS PRINCIPLE AND A RELATIVISTIC THEORY OF GRAVITATION
    BRANS, C
    DICKE, RH
    [J]. PHYSICAL REVIEW, 1961, 124 (03): : 925 - &
  • [10] Extended disformal approach in the scenario of rainbow gravity
    Carvalho, Gabriel G.
    Lobo, Iarley P.
    Bittencourt, Eduardo
    [J]. PHYSICAL REVIEW D, 2016, 93 (04)