On a p-Kirchhoff equation via Krasnoselskii's genus

被引:117
作者
Correa, Francisco Julio S. A. [1 ]
Figueiredo, Giovany M. [2 ]
机构
[1] Univ Fed Campina Grande, Unidade Acad Matemat & Estatisit, BR-58109970 Paraiba, PB, Brazil
[2] Fed Univ Para, Fac Matemat, ICEN, BR-66075110 Belem, Para, Brazil
关键词
Genus theory; Nonlocal problems; Kirchhoff equation; ELLIPTIC EQUATION;
D O I
10.1016/j.aml.2008.06.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work will use the genus theory, introduced by Krasnoselskii, to show a result of existence and multiplicity of solutions of the p-Kirchhoff equation -[M(integral(Omega) vertical bar del u vertical bar(p)dx)](p-1) Delta(p)u = f(x, u) in Omega, u = 0 on partial derivative Omega where Omega is a bounded smooth domain of R-N, 1 < p < N, and M and f are continuous functions. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:819 / 822
页数:4
相关论文
共 9 条
[1]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[2]  
Ambrosetti A., 2007, CAMBRIDGE STUD ADV M, V14
[3]  
Castro A., 1980, X Col0quio Colombiano de Matematicas
[4]   VARIANT OF LUSTERNIK-SCHNIRELMAN THEORY [J].
CLARK, DC .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 22 (01) :65-&
[5]   On an elliptic equation of p-Kirchhoff type via variational methods [J].
Correa, Francisco Julio S. A. ;
Figueiredo, Giovany M. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2006, 74 (02) :263-277
[6]   On the existence of positive solution for an elliptic equation of Kirchhoff type via Moser iteration method [J].
Correa, Francisco Julio S. A. ;
Figueiredo, Giovany M. .
BOUNDARY VALUE PROBLEMS, 2006, 2006 (1)
[7]  
COSTA DG, 1986, TOPICOS ANALISE NAOL
[8]  
Krasnoselskii M.A., 1964, Topological Methods in the Theory of Nonlinear Integral Equations
[9]  
Nascimento R.G., 2008, THESIS UNICAMP