ON HARMONIC QUASICONFORMAL MAPPINGS WITH FINITE AREA

被引:0
作者
Li, Hong-Ping [1 ]
Zhu, Jian-Feng [1 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Peoples R China
关键词
Harmonic mappings; harmonic quasiconformal mappings; coefficients estimate; Ahlfors-Schwarz lemma; INEQUALITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the class of harmonic K-quasiconformal mappings of the unit disk U with finite Euclidean areas vertical bar f(U)vertical bar(euc). We first give the Schwarz-pick lemma (cf. [8]) for this class of mappings as follows: vertical bar f(z)(z)vertical bar <= root vertical bar f(U)vertical bar(euc)/pi(1 - k(2)) 1/1 - vertical bar z vertical bar, z is an element of U, where k = K-1/K+1. Furthermore, we obtain the sharp coefficient- estimates of this class of mappings. As an application, for harmonic mappings f is an element of S-H(0) with finite vertical bar f(U)vertical bar(euc) we obtain sharp coefficient estimates.
引用
收藏
页码:726 / 733
页数:8
相关论文
共 15 条
[1]  
[Anonymous], 1995, POTENTIAL THEORY COM
[2]   LANDAU'S THEOREM AND MARDEN CONSTANT FOR HARMONIC v-BLOCH MAPPINGS [J].
Chen, Sh. ;
Ponnusamy, S. ;
Wang, X. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 84 (01) :19-32
[3]   A Schwarz-Pick inequality for harmonic quasiconformal mappings and its applications [J].
Chen, Xingdi ;
Fang, Ainong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 369 (01) :22-28
[4]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[5]   A PROOF OF THE BIEBERBACH CONJECTURE [J].
DEBRANGES, L .
ACTA MATHEMATICA, 1985, 154 (1-2) :137-152
[6]  
Duren P., 2004, Harmonic Mappings in the Plane
[7]   Quasiconformal and harmonic mappings between Jordan domains [J].
Kalaj, David .
MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (02) :237-252
[8]   On the quasi-isometries of harmonic quasiconformal mappings [J].
Knezevic, Miljan ;
Mateljevic, Miodrag .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 334 (01) :404-413
[9]  
Lewy H., 1936, Bull. Amer.Math. Soc., V42, P689
[10]  
Partyka D, 2007, ANN ACAD SCI FENN-M, V32, P579