Performance evaluation of molybdenum dichalcogenide (MoX2; X = S, Se, Te) nanostructures for hydrogen evolution reaction

被引:82
作者
Bhat, Karthik S. [1 ]
Nagaraja, H. S. [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Phys, PO Srinivasnagar, Surathkal 575025, Mangaluru, India
关键词
Molybdenum chalcogenides; Sulphides; Selenides; Tellurides; Electrocatalyst; Hydrogen evolution; TRANSITION-METAL DICHALCOGENIDES; SELENIDE NANOSTRUCTURES; MOSE2; NANOSHEETS; GRAPHENE HYBRIDS; 1T' MOTE2; ELECTROCATALYSTS; EFFICIENT; NANOPARTICLES; CHALCOGENIDES; GENERATION;
D O I
10.1016/j.ijhydene.2019.05.179
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen evolution reaction (HER) using transition metal dichalcogenides (TMDs) have gained interest owing to their low-cost, abundancy and predominant conductivity. However, forthright comparisons of transition metal chalcogenides for HER are scarcely conducted. In this work, we report the synthesis of series of molybdenum chalcogenide nanostructures MoX2 (X = S, Se, Te) via a facile hydrothermal method. Used as an electrocatalyst for HER, MoS2 nanograins, MoSe2 nanoflowers and MoTe2 nanotubes could afford the benchmark current densities of 10 mA cm(-2) at the overpotentials of -173 mV, -208 mV and -283 mV with the measured Tafel slope values of 109.81 mV dec(-1), 65.92 mV dec(-1) and 102.06 mV dec(-1), respectively. Besides other factors influencing HER, the role of electronic conductivity in HER of these molybdenum dichalcogenides are elucidated. In addition, the presented molybdenum dichalcogenides in this work are also complimented with robustness as determined from high-current density stability measurements. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:17878 / 17886
页数:9
相关论文
共 61 条
[1]  
Aikens D., 1983, J CHEM EDUC, V60, pA25, DOI [10.1021/ed060pa25.1, DOI 10.1021/ED060PA25.1]
[2]   2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition [J].
Ambrosi, Adriano ;
Sofer, Zdenek ;
Pumera, Martin .
CHEMICAL COMMUNICATIONS, 2015, 51 (40) :8450-8453
[3]   Aerogels from metal chalcogenides and their emerging unique properties [J].
Bag, Santanu ;
Arachchige, Indika U. ;
Kanatzidis, Mercouri G. .
JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (31) :3628-3632
[4]  
Bard A. J., 2000, ELECTROCHEMICAL METH
[5]   Synthesis of binder-free MoSe2 nanoflakes as a new electrode for electrocatalytic hydrogen evolution [J].
Barough, Vahid ;
Iranizad, Esmaiel Saievar ;
Bayat, Amir ;
Hemmati, Khadijeh .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2018, 823 :278-286
[6]   The hydrogen economy in the 21st century: a sustainable development scenario [J].
Barreto, L ;
Makihira, A ;
Riahi, K .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2003, 28 (03) :267-284
[7]   Characterization of Few-Layer 1T′ MoTe2 by Polarization-Resolved Second Harmonic Generation and Raman Scattering [J].
Beams, Ryan ;
Cancado, Luiz Gustavo ;
Krylyuk, Sergiy ;
Kalish, Irina ;
Kalanyan, Berc ;
Singh, Arunima K. ;
Choudhary, Kamal ;
Bruma, Alina ;
Vora, Patrick M. ;
Tavazza, Francesca ;
Da-Vydov, Albert V. ;
Stranick, Stephan J. .
ACS NANO, 2016, 10 (10) :9626-9636
[8]   Effect of isoelectronic tungsten doping on molybdenum selenide nanostructures and their graphene hybrids for supercapacitors [J].
Bhat, Karthik S. ;
Nagaraja, H. S. .
ELECTROCHIMICA ACTA, 2019, 302 :459-471
[9]   Nickel selenide nanostructures as an electrocatalyst for hydrogen evolution reaction [J].
Bhat, Karthik S. ;
Nagaraja, H. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (43) :19851-19863
[10]   Porous nickel telluride nanostructures as bifunctional electrocatalyst towards hydrogen and oxygen evolution reaction [J].
Bhat, Karthik S. ;
Barshilia, Harish C. ;
Nagaraja, H. S. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (39) :24645-24655