Mechanical feedback promotes bacterial adaptation to antibiotics

被引:35
作者
Banerjee, Shiladitya [1 ,2 ]
Lo, Klevin [3 ,4 ]
Ojkic, Nikola [2 ]
Stephens, Roisin [2 ,5 ]
Scherer, Norbert F. [3 ,4 ,6 ]
Dinner, Aaron R. [3 ,4 ,6 ]
机构
[1] Carnegie Mellon Univ, Dept Phys, Pittsburgh, PA 15213 USA
[2] UCL, Dept Phys & Astron, London, England
[3] Univ Chicago, James Franck Inst, 5640 S Ellis Ave, Chicago, IL 60637 USA
[4] Univ Chicago, Inst Biophys Dynam, Chicago, IL 60637 USA
[5] Univ Oxford, Math Inst, Oxford, England
[6] Univ Chicago, Dept Chem, 5735 S Ellis Ave, Chicago, IL 60637 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
46;
D O I
10.1038/s41567-020-01079-x
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To maximize their fitness, cells must be able to respond effectively to stresses. This demands making trade-offs between processes that conserve resources to promote survival, and processes that use resources to promote growth and division. Understanding the nature of these trade-offs and the physics underlying them remains an outstanding challenge. Here we combine single-cell experiments and theoretical modelling to propose a mechanism for antibiotic adaptation through mechanical feedback between cell growth and morphology. Under long-term exposure to sublethal doses of ribosome-targeting antibiotics, we find that Caulobacter crescentus cells can recover their pre-stimulus growth rates and undergo dramatic changes in cell shape. Upon antibiotic removal, cells recover their original forms over multiple generations. These phenomena are explained by a physical theory of bacterial growth, which demonstrates that an increase in cell width and curvature promotes faster growth under protein synthesis inhibition. Shape changes thereby make bacteria more adaptive to surviving antibiotics.
引用
收藏
页码:403 / +
页数:16
相关论文
共 46 条
[1]   Bacterial persistence as a phenotypic switch [J].
Balaban, NQ ;
Merrin, J ;
Chait, R ;
Kowalik, L ;
Leibler, S .
SCIENCE, 2004, 305 (5690) :1622-1625
[2]   Biphasic growth dynamics control cell division in Caulobacter crescentus [J].
Banerjee, Shiladitya ;
Lo, Klevin ;
Daddysman, Matthew K. ;
Selewa, Alan ;
Kuntz, Thomas ;
Dinner, Aaron R. ;
Scherer, Norbert F. .
NATURE MICROBIOLOGY, 2017, 2 (09)
[3]   Shape dynamics of growing cell walls [J].
Banerjee, Shiladitya ;
Scherer, Norbert F. ;
Dinner, Aaron R. .
SOFT MATTER, 2016, 12 (14) :3442-3450
[4]   Robustness in simple biochemical networks [J].
Barkai, N ;
Leibler, S .
NATURE, 1997, 387 (6636) :913-917
[5]   Inflating bacterial cells by increased protein synthesis [J].
Basan, Markus ;
Zhu, Manlu ;
Dai, Xiongfeng ;
Warren, Mya ;
Sevin, Daniel ;
Wang, Yi-Ping ;
Hwa, Terence .
MOLECULAR SYSTEMS BIOLOGY, 2015, 11 (10)
[6]   A Constant Size Extension Drives Bacterial Cell Size Homeostasis [J].
Campos, Manuel ;
Surovtsev, Ivan V. ;
Kato, Setsu ;
Paintdakhi, Ahmad ;
Beltran, Bruno ;
Ebmeier, Sarah E. ;
Jacobs-Wagner, Christine .
CELL, 2014, 159 (06) :1433-1446
[7]   Cell-Size Homeostasis and the Incremental Rule in a Bacterial Pathogen [J].
Deforet, Maxime ;
van Ditmarsch, Dave ;
Xavier, Joao B. .
BIOPHYSICAL JOURNAL, 2015, 109 (03) :521-528
[8]   Direct Measurement of Cell Wall Stress Stiffening and Turgor Pressure in Live Bacterial Cells [J].
Deng, Yi ;
Sun, Mingzhai ;
Shaevitz, Joshua W. .
PHYSICAL REVIEW LETTERS, 2011, 107 (15)
[9]   The Innate Growth Bistability and Fitness Landscapes of Antibiotic-Resistant Bacteria [J].
Deris, J. Barrett ;
Kim, Minsu ;
Zhang, Zhongge ;
Okano, Hiroyuki ;
Hermsen, Rutger ;
Groisman, Alexander ;
Hwa, Terence .
SCIENCE, 2013, 342 (6162) :1068-1068
[10]  
Ducret A, 2016, NAT MICROBIOL, V1, DOI [10.1038/nmicrobiol.2016.77, 10.1038/NMICROBIOL.2016.77]