Asymptotic theory for the multidimensional random on-line nearest-neighbour graph

被引:10
作者
Wade, Andrew R. [1 ]
机构
[1] Univ Bristol, Dept Math, Univ Walk, Bristol BS8 1TW, Avon, England
关键词
Random spatial graphs; Network evolution; Variance asymptotics; Martingale differences; CENTRAL LIMIT-THEOREMS; GAUSSIAN LIMITS; LARGE NUMBERS; LAWS;
D O I
10.1016/j.spa.2008.09.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The on-line nearest-neighbour graph on a sequence of n uniform random points in (0, 1)(d) (d is an element of N) joins each point after the first to its nearest neighbour amongst its predecessors. For the total power-weighted edge-length of this graph, with weight exponent alpha is an element of (0, d/2], we prove O (max{n (1-(2 alpha/d)), log n}) upper bounds on the variance. On the other hand, we give an n -> infinity large-sample convergence result for the total power-weighted edge-length when alpha > d/2. We prove corresponding results when the underlying point set is a Poisson process of intensity n. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:1889 / 1911
页数:23
相关论文
共 20 条
[1]  
[Anonymous], 1965, NATL BUR STANDARDS
[2]  
Avram F., 1993, Ann. Appl. Probab., V3, P1033, DOI 10.1214/aoap/1177005271
[3]   Gaussian limits for random measures in geometric probability [J].
Baryshnikov, Y ;
Yukich, JE .
ANNALS OF APPLIED PROBABILITY, 2005, 15 (1A) :213-253
[4]  
Berger N, 2003, LECT NOTES COMPUT SC, V2719, P725
[5]  
Bollobás B, 2003, HANDBOOK OF GRAPHS AND NETWORKS: FROM THE GENOME TO THE INTERNET, P1
[6]  
DOROGOVSTEV SN, 2003, EVOLUTION NETWORKS
[7]  
Fabrikant A, 2002, LECT NOTES COMPUT SC, V2380, P110
[8]  
Huang K, 1987, STAT MECH, V2nd
[9]  
Kesten H, 1996, ANN APPL PROBAB, V6, P495
[10]  
Neininger R, 2004, ANN APPL PROBAB, V14, P378