PRECONDITIONERS FOR SADDLE POINT SYSTEMS WITH TRACE CONSTRAINTS COUPLING 2D AND 1D DOMAINS

被引:18
作者
Kuchta, Miroslav [1 ]
Nordaas, Magne [2 ]
Verschaeve, Joris C. G. [1 ]
Mortensen, Mikael [1 ,2 ]
Mardal, Kent-Andre [1 ,2 ]
机构
[1] Univ Oslo, Dept Math, Div Mech, Oslo, Norway
[2] Ctr Biomed Comp, Simula Res Lab, N-1325 Lysaker, Norway
关键词
preconditioning; saddle-point problem; Lagrange multipliers; FINITE-ELEMENT-METHOD; APPROXIMATION; PERFORMANCE; SPACES; NORMS;
D O I
10.1137/15M1052822
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study preconditioners for a model problem describing the coupling of two elliptic subproblems posed over domains with different topological dimension by a parameter dependent constraint. A pair of parameter robust and efficient preconditioners is proposed and analyzed. Robustness and efficiency of the preconditioners is demonstrated by numerical experiments.
引用
收藏
页码:B962 / B987
页数:26
相关论文
共 48 条
[21]   Algorithm 832: UMFPACK V4.3 - An unsymmetric-pattern multifrontal method [J].
Davis, TA .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2004, 30 (02) :196-199
[22]   Performance and accuracy of LAPACK's symmetric tridiagonal eigensolvers [J].
Demmel, James W. ;
Marques, Osni A. ;
Parlett, Beresford N. ;
Voemel, Christof .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (03) :1508-1526
[23]   Multiple representations to compute orthogonal eigenvectors of symmetric tridiagonal matrices [J].
Dhillon, IS ;
Parlett, BN .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 387 :1-28
[24]  
Etienne J., 2010, PREPRINT
[25]  
Falgout RD, 2002, LECT NOTES COMPUT SC, V2331, P632
[26]  
Funken S.A., 1996, BOUNDARY ELEMENTS IM, P92
[27]   Computing Aα, log(A), and related matrix functions by contour integrals [J].
Hale, Nicholas ;
Higham, Nicholas J. ;
Trefethen, Lloyd N. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (05) :2505-2523
[28]   Multiscale preconditioning for the coupling of FEM-BEM [J].
Harbrecht, H ;
Paiva, F ;
Pérez, C ;
Schneider, R .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2003, 10 (03) :197-222
[29]   SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems [J].
Hernandez, V ;
Roman, JE ;
Vidal, V .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2005, 31 (03) :351-362
[30]  
Li K., 1994, NUMER ALGORITHMS, V8, P269