Massive Connectivity With Massive MIMO-Part II: Achievable Rate Characterization

被引:123
作者
Liu, Liang [1 ]
Yu, Wei [1 ]
机构
[1] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M5S 3G4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Beamforming; massive connectivity; massive multiple-input multiple-output (MIMO); random matrix theory; large-system analysis; Internet-of-Things (IoT); machine-type communications (MTC); WIRELESS;
D O I
10.1109/TSP.2018.2818070
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This two-part paper aims to quantify the cost of device activity detection in an uplink massive connectivity scenario with a large number of devices but device activities are sporadic. Part I of this paper shows that in an asymptotic massive multiple-input multiple-output (MIMO) regime, device activity detection can always be made perfect. Part II of this paper subsequently shows that despite the perfect device activity detection, there is nevertheless significant cost due to device detection in terms of overall achievable rate, because of the fact that nonorthogonal pilot sequences have to be used in order to accommodate the large number of potential devices, resulting in significantly larger channel estimation error as compared to conventional massive MIMO systems with orthogonal pilots. Specifically, this paper characterizes each active user's achievable rate using random matrix theory under either maximal-ratio combining (MRC) or minimum mean-squared error (MMSE) receive beamforming at the base station (BS), assuming the statistics of their estimated channels as derived in Part I. The characterization of user rate also allows the optimization of pilot sequences length. Moreover, in contrast to the conventional massive MIMO system, the MMSE beamforming is shown to achieve much higher rate than the MRC beamforming for the massive connectivity scenario under consideration. Finally, this paper illustrates the necessity of user scheduling for rate maximization when the number of active users is larger than the number of antennas at the BS.
引用
收藏
页码:2947 / 2959
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 2017, P IEEE INT S INF THE
[2]  
[Anonymous], IEEE T INF THEORY
[3]  
[Anonymous], BELIEF PROPAGATION 4
[4]   The Dynamics of Message Passing on Dense Graphs, with Applications to Compressed Sensing [J].
Bayati, Mohsen ;
Montanari, Andrea .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (02) :764-785
[5]   Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory [J].
Choi, Junil ;
Love, David J. ;
Bidigare, Patrick .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2014, 8 (05) :802-814
[6]   Message-passing algorithms for compressed sensing [J].
Donoho, David L. ;
Maleki, Arian ;
Montanari, Andrea .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (45) :18914-18919
[7]   How much training is needed in multiple-antenna wireless links? [J].
Hassibi, B ;
Hochwald, BM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (04) :951-963
[8]   Energy and Spectral Efficiency of Very Large Multiuser MIMO Systems [J].
Hien Quoc Ngo ;
Larsson, Erik G. ;
Marzetta, Thomas L. .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2013, 61 (04) :1436-1449
[9]   Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need? [J].
Hoydis, Jakob ;
ten Brink, Stephan ;
Debbah, Merouane .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2013, 31 (02) :160-171
[10]   Massive MIMO for Next Generation Wireless Systems [J].
Larsson, Erik G. ;
Edfors, Ove ;
Tufvesson, Fredrik ;
Marzetta, Thomas L. .
IEEE COMMUNICATIONS MAGAZINE, 2014, 52 (02) :186-195