Categorification of Persistent Homology

被引:78
作者
Bubenik, Peter [1 ]
Scott, Jonathan A. [1 ]
机构
[1] Cleveland State Univ, Dept Math, Cleveland, OH 44115 USA
关键词
Applied topology; Persistent topology; Topological persistence; Diagrams indexed by the poset of real numbers; Interleaving distance; TOPOLOGY;
D O I
10.1007/s00454-014-9573-x
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We redevelop persistent homology (topological persistence) from a categorical point of view. The main objects of study are -indexed diagrams in some target category. A set of such diagrams has an interleaving distance, which we show generalizes the previously studied bottleneck distance. To illustrate the utility of this approach, we generalize previous stability results for persistence, extended persistence, and kernel, image, and cokernel persistence. We give a natural construction of a category of epsilon-interleavings of -indexed diagrams in some target category and show that if the target category is abelian, so is this category of interleavings.
引用
收藏
页码:600 / 627
页数:28
相关论文
共 21 条
[1]  
[Anonymous], ARXIV12073674
[2]  
[Anonymous], CAMBRIDGE MONOGRAPHS
[3]  
[Anonymous], 2010, Computational topology: An introduction
[4]  
[Anonymous], 1965, PURE APPL MATH
[5]  
Bubenik P., 2013, ARXIV13123829
[6]   Size functions from a categorical viewpoint [J].
Cagliari, F ;
Ferri, M ;
Pozzi, P .
ACTA APPLICANDAE MATHEMATICAE, 2001, 67 (03) :225-235
[7]   Zigzag Persistence [J].
Carlsson, Gunnar ;
de Silva, Vin .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2010, 10 (04) :367-405
[8]   TOPOLOGY AND DATA [J].
Carlsson, Gunnar .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) :255-308
[9]   Proximity of Persistence Modules and their Diagrams [J].
Chazal, Frederic ;
Cohen-Steiner, David ;
Glisse, Marc ;
Guibas, Leonidas J. ;
Oudot, Steve Y. .
PROCEEDINGS OF THE TWENTY-FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SCG'09), 2009, :237-246
[10]   Stability of persistence diagrams [J].
Cohen-Steiner, David ;
Edelsbrunner, Herbert ;
Harer, John .
DISCRETE & COMPUTATIONAL GEOMETRY, 2007, 37 (01) :103-120