The topology of higher-order complexes associated with brain hubs in human connectomes

被引:33
作者
Andjelkovic, Miroslav [1 ,3 ]
Tadic, Bosiljka [1 ,2 ]
Melnik, Roderick [4 ,5 ,6 ]
机构
[1] Jozef Stefan Inst, Dept Theoret Phys, Ljubljana 1000, Slovenia
[2] Complex Sci Hub, Josefstaedter Str 39, Vienna, Austria
[3] Univ Belgrade, Natl Inst Republ Serbia, Vinca Inst Nucl Sci, Dept Thermal Engn & Energy, Belgrade 1100, Serbia
[4] Wilfrid Laurier Univ, M2NeT Lab, MS2Discovery Interdisciplinary Res Inst, 75 Univ Ave W, Waterloo, ON N2L 3C5, Canada
[5] Wilfrid Laurier Univ, Dept Math, 75 Univ Ave W, Waterloo, ON N2L 3C5, Canada
[6] BCAM Basque Ctr Appl Math, Alameda Mazarredo 14, Bilbao 48009, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
SEX-DIFFERENCES; CONNECTIVITY; ORGANIZATION; NETWORKS; PROJECT;
D O I
10.1038/s41598-020-74392-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Higher-order connectivity in complex systems described by simplexes of different orders provides a geometry for simplex-based dynamical variables and interactions. Simplicial complexes that constitute a functional geometry of the human connectome can be crucial for the brain complex dynamics. In this context, the best-connected brain areas, designated as hub nodes, play a central role in supporting integrated brain function. Here, we study the structure of simplicial complexes attached to eight global hubs in the female and male connectomes and identify the core networks among the affected brain regions. These eight hubs (Putamen, Caudate, Hippocampus and Thalamus-Proper in the left and right cerebral hemisphere) are the highest-ranking according to their topological dimension, defined as the number of simplexes of all orders in which the node participates. Furthermore, we analyse the weight-dependent heterogeneity of simplexes. We demonstrate changes in the structure of identified core networks and topological entropy when the threshold weight is gradually increased. These results highlight the role of higher-order interactions in human brain networks and provide additional evidence for (dis)similarity between the female and male connectomes.
引用
收藏
页数:10
相关论文
共 48 条
[1]   Hubs of brain functional networks are radically reorganized in comatose patients [J].
Achard, Sophie ;
Delon-Martin, Chantal ;
Vertes, Petra E. ;
Renard, Felix ;
Schenck, Maleka ;
Schneider, Francis ;
Heinrich, Christian ;
Kremer, Stephane ;
Bullmore, Edward T. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (50) :20608-20613
[2]   Hidden geometry of traffic jamming [J].
Andjelkovic, Miroslav ;
Gupte, Neelima ;
Tadic, Bosiljka .
PHYSICAL REVIEW E, 2015, 91 (05)
[3]   Communication dynamics in complex brain networks [J].
Avena-Koenigsberger, Andrea ;
Misic, Bratislav ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2018, 19 (01) :17-33
[4]   Developmental Changes in Brain Network Hub Connectivity in Late Adolescence [J].
Baker, Simon T. E. ;
Lubman, Dan I. ;
Yuecel, Murat ;
Allen, Nicholas B. ;
Whittle, Sarah ;
Fulcher, Ben D. ;
Zalesky, Andrew ;
Fornito, Alex .
JOURNAL OF NEUROSCIENCE, 2015, 35 (24) :9078-9087
[5]  
Bandelt HJ, 2008, CONTEMP MATH, V453, P49
[6]   Gromov hyperbolic graphs [J].
Bermudo, Sergio ;
Rodriguez, Jose M. ;
Sigarreta, Jose M. ;
Vilaire, Jean-Marie .
DISCRETE MATHEMATICS, 2013, 313 (15) :1575-1585
[7]   The modular and integrative functional architecture of the human brain [J].
Bertolero, Maxwell A. ;
Yeo, B. T. Thomas ;
D'Esposito, Mark .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (49) :E6798-E6807
[8]  
Betzel RF, 2017, NETW NEUROSCI, V1, P42, DOI [10.1162/netn_a_00002, 10.1162/NETN_a_00002]
[9]   Complex quantum network geometries: Evolution and phase transitions [J].
Bianconi, Ginestra ;
Rahmede, Christoph ;
Wu, Zhihao .
PHYSICAL REVIEW E, 2015, 92 (02)
[10]   Quantum statistics in Network Geometry with Fractional Flavor [J].
Cinardi, Nicola ;
Rapisarda, Andrea ;
Bianconi, Ginestra .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019, 2019 (10)