Correlation of carbon nanotube dispersability in aqueous surfactant solutions and polymers

被引:106
作者
Krause, Beate [1 ]
Petzold, Gudrun [1 ]
Pegel, Sven [1 ]
Poetschke, Petra [1 ]
机构
[1] Leibniz Inst Polymer Res Dresden, D-01069 Dresden, Germany
关键词
DISPERSION; SUSPENSIONS; COMPOSITES; PYROLYSIS; STABILITY;
D O I
10.1016/j.carbon.2008.10.040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to assess the dispersability of carbon nanotube materials, tubes produced under different synthesis conditions were dispersed in aqueous surfactant solutions and the sedimentation behaviour under centrifugation forces was investigated using a LUMiFuge stability analyzer. The electrical percolation threshold of the nanotubes after melt mixing in polyamide 6.6 was determined and the state of dispersion was studied. As a general tendency, the nanotubes having better aqueous dispersion stability showed lower electrical percolation threshold and better nanotube dispersion in the composites. This indicates that the investigation of the stability of aqueous dispersions is also able to give information about the nanotubes inherent dispersability, in polymer melts, both strongly influenced by the entanglement and agglomerate structure of the tubes within the as-produced nanotube materials. The shape of the nanotubes in the aqueous dispersions was assessed using a SYSMEX flow particle image analyzer and found to correspond to the shape observed from cryofractured surfaces of the polymer composites. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:602 / 612
页数:11
相关论文
共 35 条
[1]   Continuous production of aligned carbon nanotubes: a step closer to commercial realization [J].
Andrews, R ;
Jacques, D ;
Rao, AM ;
Derbyshire, F ;
Qian, D ;
Fan, X ;
Dickey, EC ;
Chen, J .
CHEMICAL PHYSICS LETTERS, 1999, 303 (5-6) :467-474
[2]   Mechanical properties of multiwall carbon nanotubes/epoxy composites:: influence of network morphology [J].
Breton, Y ;
Désarmot, G ;
Salvetat, JP ;
Delpeux, S ;
Sinturel, C ;
Béguin, F ;
Bonnamy, S .
CARBON, 2004, 42 (5-6) :1027-1030
[3]   Aggregation behavior of single-walled carbon nanotubes in dilute aqueous suspension [J].
Chen, Q ;
Saltiel, C ;
Manickavasagam, S ;
Schadler, LS ;
Siegel, RW ;
Yang, HC .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 280 (01) :91-97
[4]   Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method [J].
Colomer, JF ;
Stephan, C ;
Lefrant, S ;
Van Tendeloo, G ;
Willems, I ;
Kónya, Z ;
Fonseca, A ;
Laurent, C ;
Nagy, JB .
CHEMICAL PHYSICS LETTERS, 2000, 317 (1-2) :83-89
[5]   Characterization of multiwall carbon nanotubes and influence of surfactant in the nanocomposite processing [J].
Cui, S ;
Canet, R ;
Derre, A ;
Couzi, M ;
Delhaes, P .
CARBON, 2003, 41 (04) :797-809
[6]   Interpretation of Raman spectra of disordered and amorphous carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2000, 61 (20) :14095-14107
[7]   Synthesis of highly nitrogen-doped multi-walled carbon nanotubes [J].
Glerup, M ;
Castignolles, M ;
Holzinger, M ;
Hug, G ;
Loiseau, A ;
Bernier, P .
CHEMICAL COMMUNICATIONS, 2003, (20) :2542-2543
[8]   On the crucial role of wetting in the preparation of conductive polystyrene-carbon nanotube composites [J].
Grossiord, Nadia ;
Miltner, Hans E. ;
Loos, Joachim ;
Meuldijk, Jan ;
Van Mele, Bruno ;
Koning, Cor E. .
CHEMISTRY OF MATERIALS, 2007, 19 (15) :3787-3792
[9]   Determination of the surface coverage of exfoliated carbon nanotubes by surfactant molecules in aqueous solution [J].
Grossiord, Nadia ;
van der Schoot, Paul ;
Meuldijk, Jan ;
Koning, Cor E. .
LANGMUIR, 2007, 23 (07) :3646-3653
[10]   Fe-catalyzed carbon nanotube formation [J].
Hernadi, K ;
Fonseca, A ;
Nagy, JB ;
Bernaerts, D ;
Lucas, AA .
CARBON, 1996, 34 (10) :1249-1257