Quantum error correction in crossbar architectures

被引:16
作者
Helsen, Jonas [1 ]
Steudtner, Mark [1 ,2 ]
Veldhorst, Menno [1 ,3 ]
Wehner, Stephanie [1 ]
机构
[1] Delft Univ Technol, QuTech, Lorentzweg 1, NL-2628 CJ Delft, Netherlands
[2] Leiden Univ, Inst Lorentz, POB 9506, NL-2300 RA Leiden, Netherlands
[3] Delft Univ Technol, Kavli Inst Nanosci, POB 5046, NL-2600 GA Delft, Netherlands
关键词
quantum computing; quantum computing architectures; control of quantum computers; quantum error correction; SPINS;
D O I
10.1088/2058-9565/aab8b0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A central challenge for the scaling of quantum computing systems is the need to control all qubits in the system without a large overhead. A solution for this problem in classical computing comes in the form of so-called crossbar architectures. Recently we made a proposal for a large-scale quantum processor (Li et al arXiv: 1711.03807 (2017)) to be implemented in silicon quantum dots. This system features a crossbar control architecture which limits parallel single-qubit control, but allows the scheme to overcome control scaling issues that form a major hurdle to large-scale quantum computing systems. In this work, we develop a language that makes it possible to easily map quantum circuits to crossbar systems, taking into account their architecture and control limitations. Using this language we show how to map well known quantum error correction codes such as the planar surface and color codes in this limited control setting with only a small overhead in time. We analyze the logical error behavior of this surface code mapping for estimated experimental parameters of the crossbar system and conclude that logical error suppression to a level useful for real quantum computation is feasible.
引用
收藏
页数:28
相关论文
共 35 条
[21]   Coherent manipulation of coupled electron spins in semiconductor quantum dots [J].
Petta, JR ;
Johnson, AC ;
Taylor, JM ;
Laird, EA ;
Yacoby, A ;
Lukin, MD ;
Marcus, CM ;
Hanson, MP ;
Gossard, AC .
SCIENCE, 2005, 309 (5744) :2180-2184
[22]   Natural two-qubit gate for quantum computation using the XY interaction -: art. no. 032301 [J].
Schuch, N ;
Siewert, J .
PHYSICAL REVIEW A, 2003, 67 (03) :8
[23]   Fault-tolerant architecture for quantum computation using electrically controlled semiconductor spins [J].
Taylor, JM ;
Engel, HA ;
Dür, W ;
Yacoby, A ;
Marcus, CM ;
Zoller, P ;
Lukin, MD .
NATURE PHYSICS, 2005, 1 (03) :177-183
[24]   Quantum error correction for quantum memories [J].
Terhal, Barbara M. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (02) :307-346
[25]   Low-distance surface codes under realistic quantum noise [J].
Tomita, Yu ;
Svore, Krysta M. .
PHYSICAL REVIEW A, 2014, 90 (06)
[26]   Ultrahigh Error Threshold for Surface Codes with Biased Noise [J].
Tuckett, David K. ;
Bartlett, Stephen D. ;
Flammia, Steven T. .
PHYSICAL REVIEW LETTERS, 2018, 120 (05)
[27]  
Tyryshkin AM, 2012, NAT MATER, V11, P143, DOI [10.1038/nmat3182, 10.1038/NMAT3182]
[28]   Interfacing spin qubits in quantum dots and donors-hot, dense, and coherent [J].
Vandersypen, L. M. K. ;
Bluhm, H. ;
Clarke, J. S. ;
Dzurak, A. S. ;
Ishihara, R. ;
Morello, A. ;
Reilly, D. J. ;
Schreiber, L. R. ;
Veldhorst, M. .
NPJ QUANTUM INFORMATION, 2017, 3
[29]   Silicon CMOS architecture for a spin-based quantum computer [J].
Veldhorst, M. ;
Eenink, H. G. J. ;
Yang, C. H. ;
Dzurak, A. S. .
NATURE COMMUNICATIONS, 2017, 8
[30]   A two-qubit logic gate in silicon [J].
Veldhorst, M. ;
Yang, C. H. ;
Hwang, J. C. C. ;
Huang, W. ;
Dehollain, J. P. ;
Muhonen, J. T. ;
Simmons, S. ;
Laucht, A. ;
Hudson, F. E. ;
Itoh, K. M. ;
Morello, A. ;
Dzurak, A. S. .
NATURE, 2015, 526 (7573) :410-414