An implementation of discrete electron transport models for gold in the Geant4 simulation toolkit

被引:56
作者
Sakata, D. [1 ,2 ]
Incerti, S. [1 ,2 ]
Bordage, M. C. [3 ,4 ]
Lampe, N. [2 ,5 ]
Okada, S. [6 ]
Emfietzoglou, D. [7 ]
Kyriakou, I. [7 ]
Murakami, K. [6 ]
Sasaki, T. [6 ]
Tran, H. [8 ]
Guatelli, S. [9 ,10 ]
Ivantchenko, V. N. [11 ]
机构
[1] Univ Bordeaux, CENBG, Bordeaux, France
[2] CNRS, CENBG, IN2P3, Bordeaux, France
[3] INSERM, CRCT, Toulouse, France
[4] Univ Toulouse III Paul Sabatier, Toulouse, France
[5] Univ Blaise Pascal, Univ Clermont Auvergne, Lab Phys Corpusculaire, CNRS,IN2P3, Clermont Ferrand, France
[6] KEK, Tsukuba, Ibaraki, Japan
[7] Univ Ioannina, Med Phys Lab, Sch Med, Ioannina, Greece
[8] Univ Paris Saclay, CEA, Irfu, F-91191 Gif Sur Yvette, France
[9] Univ Wollongong, Ctr Med Radiat Phys, Wollongong, NSW, Australia
[10] Univ Wollongong, Illawarra Hlth & Med Res Inst, Wollongong, NSW, Australia
[11] Geant4 Associates Int Ltd, Hebden Bridge, England
基金
澳大利亚研究理事会;
关键词
MONTE-CARLO-SIMULATION; IONIZATION CROSS-SECTIONS; TRACK-STRUCTURE; BACKSCATTERING COEFFICIENT; INELASTIC-SCATTERING; RANGE MEASUREMENTS; STOPPING POWERS; ENERGY-LOSS; NANOPARTICLES; SOLIDS;
D O I
10.1063/1.4972191
中图分类号
O59 [应用物理学];
学科分类号
摘要
Gold nanoparticle (GNP) boosted radiation therapy can enhance the biological effectiveness of radiation treatments by increasing the quantity of direct and indirect radiation-induced cellular damage. As the physical effects of GNP boosted radiotherapy occur across energy scales that descend down to 10 eV, Monte Carlo simulations require discrete physics models down to these very low energies in order to avoid underestimating the absorbed dose and secondary particle generation. Discrete physics models for electron transportation down to 10 eV have been implemented within the Geant4-DNA low energy extension of Geant4. Such models allow the investigation of GNP effects at the nanoscale. At low energies, the new models have better agreement with experimental data on the backscattering coefficient, and they show similar performance for transmission coefficient data as the Livermore and Penelope models already implemented in Geant4. These new models are applicable in simulations focussed towards estimating the relative biological effectiveness of radiation in GNP boosted radiotherapy applications with photon and electron radiation sources. Published by AIP Publishing.
引用
收藏
页数:7
相关论文
共 59 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Ion and electron track-structure and its effects in silicon: model and calculations [J].
Akkerman, A ;
Barak, J ;
Emfietzoglou, D .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2005, 227 (03) :319-336
[3]   STOPPING POWERS AND EXTRAPOLATED RANGES FOR ELECTRONS (1-10 KEV) IN METALS [J].
ALAHMAD, KO ;
WATT, DE .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1983, 16 (11) :2257-2267
[4]   Geant4 developments and applications [J].
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Dubois, PA ;
Asai, M ;
Barrand, G ;
Capra, R ;
Chauvie, S ;
Chytracek, R ;
Cirrone, GAP ;
Cooperman, G ;
Cosmo, G ;
Cuttone, G ;
Daquino, GG ;
Donszelmann, M ;
Dressel, M ;
Folger, G ;
Foppiano, F ;
Generowicz, J ;
Grichine, V ;
Guatelli, S ;
Gumplinger, P ;
Heikkinen, A ;
Hrivnacova, I ;
Howard, A ;
Incerti, S ;
Ivanchenko, V ;
Johnson, T ;
Jones, F ;
Koi, T ;
Kokoulin, R ;
Kossov, M ;
Kurashige, H ;
Lara, V ;
Larsson, S ;
Lei, F ;
Link, O ;
Longo, F ;
Maire, M ;
Mantero, A ;
Mascialino, B ;
McLaren, I ;
Lorenzo, PM ;
Minamimoto, K ;
Murakami, K ;
Nieminen, P ;
Pandola, L ;
Parlati, S ;
Peralta, L .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2006, 53 (01) :270-278
[5]   Recent developments in GEANT4 [J].
Allison, J. ;
Amako, K. ;
Apostolakis, J. ;
Arce, P. ;
Asai, M. ;
Aso, T. ;
Bagli, E. ;
Bagulya, A. ;
Banerjee, S. ;
Barrand, G. ;
Beck, B. R. ;
Bogdanov, A. G. ;
Brandt, D. ;
Brown, J. M. C. ;
Burkhardt, H. ;
Canal, Ph. ;
Cano-Ott, D. ;
Chauvie, S. ;
Cho, K. ;
Cirrone, G. A. P. ;
Cooperman, G. ;
Cortes-Giraldo, M. A. ;
Cosmo, G. ;
Cuttone, G. ;
Depaola, G. ;
Desorgher, L. ;
Dong, X. ;
Dotti, A. ;
Elvira, V. D. ;
Folger, G. ;
Francis, Z. ;
Galoyan, A. ;
Garnier, L. ;
Gayer, M. ;
Genser, K. L. ;
Grichine, V. M. ;
Guatelli, S. ;
Gueye, P. ;
Gumplinger, P. ;
Howard, A. S. ;
Hrivnacova, I. ;
Hwang, S. ;
Incerti, S. ;
Ivanchenko, A. ;
Ivanchenko, V. N. ;
Jones, F. W. ;
Jun, S. Y. ;
Kaitaniemi, P. ;
Karakatsanis, N. ;
Karamitrosi, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 :186-225
[6]   Geant4 electromagnetic physics for high statistic simulation of LHC experiments [J].
Allison, J. ;
Apostolakis, J. ;
Bagulya, A. ;
Champion, C. ;
Elles, S. ;
Garay, F. ;
Grichine, V. ;
Howard, A. ;
Incerti, S. ;
Ivanchenko, V. ;
Jacquemier, J. ;
Maire, M. ;
Mantero, A. ;
Nieminen, P. ;
Pandola, L. ;
Santin, G. ;
Sawkey, D. ;
Schaelicke, A. ;
Urban, L. .
INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS 2012 (CHEP2012), PTS 1-6, 2012, 396
[7]  
[Anonymous], 1992, ESTAR PSTAR ASTAR CO
[8]   APPROXIMATE STOPPING POWER LAW OF ELECTRONS AND POSITRONS [J].
BATRA, RK ;
SEHGAL, ML .
NUCLEAR INSTRUMENTS & METHODS, 1973, 109 (03) :565-569
[9]   Track structure modeling in liquid water: A review of the Geant4-DNA very low energy extension of the Geant4 Monte Carlo simulation toolkit [J].
Bernal, M. A. ;
Bordage, M. C. ;
Brown, J. M. C. ;
Davidkova, M. ;
Delage, E. ;
El Bitar, Z. ;
Enger, S. A. ;
Francis, Z. ;
Guatelli, S. ;
Ivanchenko, V. N. ;
Karamitros, M. ;
Kyriakou, I. ;
Maigne, L. ;
Meylan, S. ;
Murakami, K. ;
Okada, S. ;
Payno, H. ;
Perrot, Y. ;
Petrovic, I. ;
Pham, Q. T. ;
Ristic-Fira, A. ;
Sasaki, T. ;
Stepan, V. ;
Tran, H. N. ;
Villagrasa, C. ;
Incerti, S. .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2015, 31 (08) :861-874
[10]   An investigation on the capabilities of the PENELOPE MC code in nanodosimetry [J].
Bernal, M. A. ;
Liendo, J. A. .
MEDICAL PHYSICS, 2009, 36 (02) :620-625