SERIES SOLUTION OF A NONLOCAL PROBLEM FOR A TIME-FRACTIONAL DIFFUSION-WAVE EQUATION WITH DAMPING

被引:0
作者
Bazhlekova, Emilia [1 ]
机构
[1] Bulgarian Acad Sci, Inst Math & Informat, BU-1113 Sofia, Bulgaria
来源
COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES | 2013年 / 66卷 / 08期
关键词
time-fractional diffusion-wave equation; Caputo fractional derivative; nonlocal boundary condition; three-parameter Mittag-Leffler function; EXPLICIT SOLUTION;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
One-dimensional time-fractional diffusion-wave equation with damping is studied on a bounded space domain. One of the prescribed boundary conditions is nonlocal. The unique solution is constructed in the form of a series expansion in terms of the generalized eigenfunctions of a non-selfadjoint Sturm-Liouville problem and three-parameter Mittag-Leffler functions.
引用
收藏
页码:1091 / 1096
页数:6
相关论文
共 14 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]   Explicit Solution for a Wave Equation with Nonlocal Condition [J].
Bazhlekova, Emilia ;
Dimovski, Ivan .
APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '12), 2012, 1497 :221-232
[3]  
Bazhlekova E, 2012, CR ACAD BULG SCI, V65, P1175
[4]  
Bozhinov N. S, 1990, DIFF EQUAT, V26, P741
[5]   Analytical solution for the time-fractional telegraph equation by the method of separating variables [J].
Chen, J. ;
Liu, F. ;
Anh, V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1364-1377
[6]   The analytical solution and numerical solution of the fractional diffusion-wave equation with damping [J].
Chen, J. ;
Liu, F. ;
Anh, V. ;
Shen, S. ;
Liu, Q. ;
Liao, C. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (04) :1737-1748
[7]  
Diethelm K., 2010, LECT NOTES MATH
[8]   Solvability of a Dirichlet problem for a time fractional diffusion-wave equation in Lipschitz domains [J].
Kemppainen, Jukka .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (02) :195-206
[9]   On a class of time-fractional differential equations [J].
Li, Cheng-Gang ;
Kostic, Marko ;
Li, Miao ;
Piskarev, Sergey .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) :639-668
[10]   INITIAL-BOUNDARY-VALUE PROBLEMS FOR THE ONE-DIMENSIONAL TIME-FRACTIONAL DIFFUSION EQUATION [J].
Luchko, Yuri .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (01) :141-160