The ecosystem size and shape dependence of gas transfer velocity versus wind speed relationships in lakes

被引:167
作者
Vachon, Dominic [1 ,2 ]
Prairie, Yves T. [1 ,2 ]
机构
[1] Univ Quebec, Grp Rech Interuniv Limnol & Environm Aquat GRIL, Montreal, PQ H3C 3P8, Canada
[2] Univ Quebec, Dept Sci Biol, Montreal, PQ H3C 3P8, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CARBON-DIOXIDE; SEDIMENT RESPIRATION; SURFACE TURBULENCE; CO2; EXCHANGE; CHAMBER; BOREAL; VARIABILITY; EMISSIONS; FLUXES; WATERS;
D O I
10.1139/cjfas-2013-0241
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Air-water diffusive gas flux is commonly determined using measurements of gas concentrations and an estimate of gas transfer velocity (k(600)) usually derived from wind speed. The great heterogeneity of aquatic systems raises questions about the appropriateness of using a single wind-based model to predict k(600) in all aquatic systems. Theoretical considerations suggest that wind speed to k(600) relationships should instead be system-specific. Using data collected from aquatic systems of different sizes, we show that k(600) is related to fetch and other measures of ecosystem size. Lake area together with wind speed provided the best predictive model of gas transfer velocity and explained 68% of the variability in individual k(600) measurements. For a moderate wind speed of 5 m.s(-1), predicted k(600) varied from 6 cm.h(-1) in a small 1 ha lake to over 13 cm.h(-1) in a 100 km(2) system. Wave height is also shown to be a promising integrative predictor variable. The modulating influence of system size on wind speed - gas transfer velocity relationships can have a large impact on upscaling exercises of gas exchange at the whole landscape level.
引用
收藏
页码:1757 / 1764
页数:8
相关论文
共 42 条
[1]   Contribution of sediment respiration to summer CO2 emission from low productive boreal and subarctic lakes [J].
Algesten, G ;
Sobek, S ;
Bergström, AK ;
Jonsson, A ;
Tranvik, LJ ;
Jansson, M .
MICROBIAL ECOLOGY, 2005, 50 (04) :529-535
[2]   Impact of chemically enhanced diffusion on dissolved inorganic carbon stable isotopes in a fertilized lake [J].
Bade, DL ;
Cole, JJ .
JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2006, 111 (C1)
[3]   CO2 and CH4 fluxes during spring and autumn mixing periods in a boreal lake (Paajarvi, southern Finland) [J].
Bellido, Jessica Lopez ;
Tulonen, Tiina ;
Kankaala, Paula ;
Ojala, Anne .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2009, 114
[4]   Gas transfer velocities of CO2 in three European estuaries (Randers Fjord, Scheldt, and Thames) [J].
Borges, AV ;
Delille, B ;
Schiettecatte, LS ;
Gazeau, F ;
Abril, G ;
Frankignoulle, M .
LIMNOLOGY AND OCEANOGRAPHY, 2004, 49 (05) :1630-1641
[5]   Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6 [J].
Cole, JJ ;
Caraco, NF .
LIMNOLOGY AND OCEANOGRAPHY, 1998, 43 (04) :647-656
[6]   Multiple approaches to estimating air-water gas exchange in small lakes [J].
Cole, Jonathan J. ;
Bade, Darren L. ;
Bastviken, David ;
Pace, Michael L. ;
Van de Bogert, Matthew .
LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2010, 8 :285-293
[7]   Gas transfer velocities measured at low wind speed over a lake [J].
Crusius, J ;
Wanninkhof, R .
LIMNOLOGY AND OCEANOGRAPHY, 2003, 48 (03) :1010-1017
[8]   GAS TRANSFER TO AND ACROSS AN AIR-WATER-INTERFACE [J].
DEACON, EL .
TELLUS, 1977, 29 (04) :363-374
[9]   The global abundance and size distribution of lakes, ponds, and impoundments [J].
Downing, J. A. ;
Prairie, Y. T. ;
Cole, J. J. ;
Duarte, C. M. ;
Tranvik, L. J. ;
Striegl, R. G. ;
McDowell, W. H. ;
Kortelainen, P. ;
Caraco, N. F. ;
Melack, J. M. ;
Middelburg, J. J. .
LIMNOLOGY AND OCEANOGRAPHY, 2006, 51 (05) :2388-2397
[10]   Comparison of static chamber and thin boundary layer equation methods for measuring greenhouse gas emissions from large water bodies [J].
Duchemin, E ;
Lucotte, M ;
Canuel, R .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 1999, 33 (02) :350-357