Nonadiabatic Molecular Quantum Dynamics with Quantum Computers

被引:54
作者
Ollitrault, Pauline J. [1 ,2 ]
Mazzola, Guglielmo [1 ]
Tavernelli, Ivano [1 ]
机构
[1] IBM Res Zurich, IBM Quantum, Saumerstr 4, CH-8803 Ruschlikon, Switzerland
[2] Swiss Fed Inst Technol, Lab Phys Chem, Vladimir Prelog Weg 2, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
ELECTRON-TRANSFER REACTIONS; CONICAL INTERSECTIONS; SIMULATION; ALGORITHM; CHEMISTRY; PHYSICS;
D O I
10.1103/PhysRevLett.125.260511
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The theoretical investigation of nonadiabatic processes is hampered by the complexity of the coupled electron-nuclear dynamics beyond the Born-Oppenheimer approximation. Classically, the simulation of such reactions is limited by the unfavorable scaling of the computational resources as a function of the system size. While quantum computing exhibits proven quantum advantage for the simulation of real-time dynamics, the study of quantum algorithms for the description of nonadiabatic phenomena is still unexplored. In this Letter, we propose a quantum algorithm for the simulation of fast nonadiabatic chemical processes together with an initialization scheme for quantum hardware calculations. In particular, we introduce a first-quantization method for the time evolution of a wave packet on two coupled harmonic potential energy surfaces (Marcus model). In our approach, the computational resources scale polynomially in the system dimensions, opening up new avenues for the study of photophysical processes that are classically intractable.
引用
收藏
页数:6
相关论文
共 65 条
[1]   Quantum Simulation of the Ultrastrong-Coupling Dynamics in Circuit Quantum Electrodynamics [J].
Ballester, D. ;
Romero, G. ;
Garcia-Ripoll, J. J. ;
Deppe, F. ;
Solano, E. .
PHYSICAL REVIEW X, 2012, 2 (02)
[2]   The multiconfiguration time-dependent Hartree (MCTDH) method:: a highly efficient algorithm for propagating wavepackets [J].
Beck, MH ;
Jäckle, A ;
Worth, GA ;
Meyer, HD .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 324 (01) :1-105
[3]   Quantum simulation of the single-particle Schrodinger equation [J].
Benenti, Giuliano ;
Strini, Giuliano .
AMERICAN JOURNAL OF PHYSICS, 2008, 76 (07) :657-662
[4]   Efficient quantum algorithms for simulating sparse Hamiltonians [J].
Berry, Dominic W. ;
Ahokas, Graeme ;
Cleve, Richard ;
Sanders, Barry C. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 270 (02) :359-371
[5]  
Bersuker Isaac., 2013, The Jahn-Teller effect and vibronic interactions in modern chemistry
[6]   Nonadiabatic effects in electronic and nuclear dynamics [J].
Bircher, Martin P. ;
Liberatore, Elisa ;
Browning, Nicholas J. ;
Brickel, Sebastian ;
Hofmann, Cornelia ;
Patoz, Aurelien ;
Unke, Oliver T. ;
Zimmermann, Tomas ;
Chergui, Majed ;
Hamm, Peter ;
Keller, Ursula ;
Meuwly, Markus ;
Woerner, Hans-Jakob ;
Vanicek, Jiri ;
Rothlisberger, Ursula .
STRUCTURAL DYNAMICS-US, 2017, 4 (06)
[7]   Multimode quantum dynamics using Gaussian wavepackets: The Gaussian-based multiconfiguration time-dependent Hartree (G-MCTDH) method applied to the absorption spectrum of pyrazine [J].
Burghardt, I. ;
Giri, K. ;
Worth, G. A. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (17)
[8]   A Quantum Dynamics Study of the Ultrafast Relaxation in a Prototypical Cu(I)-Phenanthroline [J].
Capano, G. ;
Chergui, M. ;
Rothlisberger, U. ;
Tavernelli, I. ;
Penfold, T. J. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2014, 118 (42) :9861-9869
[9]   Computation of Molecular Spectra on a Quantum Processor with an Error-Resilient Algorithm [J].
Colless, J. I. ;
Ramasesh, V. V. ;
Dahlen, D. ;
Blok, M. S. ;
Kimchi-Schwartz, M. E. ;
McClean, J. R. ;
Carter, J. ;
de Jong, W. A. ;
Siddiqi, I. .
PHYSICAL REVIEW X, 2018, 8 (01)
[10]   Ab Initio Nonadiabatic Quantum Molecular Dynamics [J].
Curchod, Basile F. E. ;
Martinez, Todd J. .
CHEMICAL REVIEWS, 2018, 118 (07) :3305-3336