Convergence Analysis for Ant Colony Algorithm

被引:0
作者
Zhao, Baojiang [1 ]
机构
[1] Mudanjing Normal Univ, Coll Sci, Mudanjing 157011, Heilongjiang, Peoples R China
来源
2015 8TH INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DESIGN (ISCID), VOL 1 | 2015年
关键词
Ant colony algorithm; ant colony System; convergence; heuristics; OPTIMIZATION;
D O I
10.1109/ISCID.2015.99
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A general method for combinatorial optimization problems heuristically by the Ant System approach is proposed. According to the two different conditions, some convergence analysis for Ant Colony System (ACS) are obtained. The global searching and convergence ability are improved by adaptively changing the lower pheromone bound. It is proved that ACS finds an optimal solution with probability 1.
引用
收藏
页码:362 / 365
页数:4
相关论文
共 9 条
[1]  
Aarts E., 1989, Simulated annealing and Boltzmann machines: a stochastic approach to combinatorial optimization and neural computing
[2]  
Blum Christian, 2004, REV ANT COLONY OPTIM
[3]  
Dorigo M., 1997, IEEE Transactions on Evolutionary Computation, V1, P53, DOI 10.1109/4235.585892
[4]   Ant algorithms and stigmergy [J].
Dorigo, M ;
Bonabeau, E ;
Theraulaz, G .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2000, 16 (08) :851-871
[5]   First steps to the runtime complexity analysis of ant colony optimization [J].
Gutjahr, Walter J. .
COMPUTERS & OPERATIONS RESEARCH, 2008, 35 (09) :2711-2727
[6]   A provably convergent heuristic for stochastic bicriteria integer programming [J].
Gutjahr, Walter J. .
JOURNAL OF HEURISTICS, 2009, 15 (03) :227-258
[7]   A generalized convergence result for the graph-based ant system metaheuristic [J].
Gutjahr, WJ .
PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2003, 17 (04) :545-569
[8]  
Martin Reed, 2014, APPL SOFT COMPUT, V15, P169
[9]   Ant colony optimization and stochastic gradient descent [J].
Meuleau, N ;
Dorigo, M .
ARTIFICIAL LIFE, 2002, 8 (02) :103-121