An ultrafast charging polyphenylamine-based cathode material for high rate lithium, sodium and potassium batteries

被引:72
作者
Obrezkov, Filipp A. [1 ]
Shestakov, Alexander F. [2 ,3 ]
Traven, Valerii F. [4 ]
Stevenson, Keith J. [1 ]
Troshin, Pavel A. [1 ,2 ]
机构
[1] Skolkovo Inst Sci & Technol, Nobel St 3, Moscow 143026, Russia
[2] Russian Acad Sci, Inst Problems Chem Phys, Acad Semenov Ave 1, Chernogolovka 142432, Moscow Region, Russia
[3] Moscow MV Lomonosov State Univ, Dept Fundamental Phys & Chem Engn, Moscow 119991, Russia
[4] DI Mendeleev Univ Chem Technol Russia, Miusskaya Sq 9, Moscow 125047, Russia
基金
俄罗斯科学基金会;
关键词
ORGANIC CATHODE; POLYMERS;
D O I
10.1039/c8ta11572a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the synthesis and investigation of a novel redox-active poly(N,N-diphenyl-p-phenylenediamine) (PDPPD) material obtained via the Buchwald-Hartwig C-N cross-coupling reaction. PDPPD has a high density of redox-active amine groups enabling a theoretical specific capacity of 209 mA h g(-1), which is much higher than that of all other materials of this family reported so far. The obtained polymer was evaluated as a cathode material for dual-ion batteries and it demonstrated promising operating voltages of 3.5-3.7 V and decent practical gravimetric capacities of 97, 94 and 63 mA h g(-1) in lithium, sodium and potassium half-cells, respectively, while being tested at a moderate current density of 1C. A specific capacity of 84 mA h g(-1) was obtained for ultrafast lithium batteries operating at 100C (full charge and discharge takes 36 seconds only), which is, to the best of our knowledge, the highest battery capacity reported so far for such high current densities. The PDPPD//Li batteries also showed promising stability reflected in 67% capacity retention after 5000 charge-discharge cycles.
引用
收藏
页码:11430 / 11437
页数:8
相关论文
共 29 条
[1]  
Caban-Huertas Z., 2016, SCI REP, V6, P1
[2]   Organic cathode materials for rechargeable batteries [J].
Cao, Ruiguo ;
Qian, Jiangfeng ;
Zhang, Ji-Guang ;
Xu, Wu .
Green Energy and Technology, 2015, 172 :637-671
[3]   Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries [J].
Choi, Nam-Soon ;
Han, Jung-Gu ;
Ha, Se-Young ;
Park, Inbok ;
Back, Chang-Keun .
RSC ADVANCES, 2015, 5 (04) :2732-2748
[4]   An Organic Cathode for Potassium Dual-Ion Full Battery [J].
Fan, Ling ;
Liu, Qan ;
Xu, Zhi ;
Lu, Bingan .
ACS ENERGY LETTERS, 2017, 2 (07) :1614-1620
[5]   Polytriphenylamine: A high power and high capacity cathode material for rechargeable lithium batteries [J].
Feng, J. K. ;
Cao, Y. L. ;
Ai, X. P. ;
Yang, H. X. .
JOURNAL OF POWER SOURCES, 2008, 177 (01) :199-204
[6]   Aqueous zinc-organic polymer battery with a high rate performance and long lifetime [J].
Haeupler, Bernhard ;
Roessel, Carsten ;
Schwenke, Almut M. ;
Winsberg, Jan ;
Schmidt, Daniel ;
Wild, Andreas ;
Schubert, Ulrich S. .
NPG ASIA MATERIALS, 2016, 8 :e283-e283
[7]   Carbonyls: Powerful Organic Materials for Secondary Batteries [J].
Haeupler, Bernhard ;
Wild, Andreas ;
Schubert, Ulrich S. .
ADVANCED ENERGY MATERIALS, 2015, 5 (11)
[8]   Powering up the Future: Radical Polymers for Battery Applications [J].
Janoschka, Tobias ;
Hager, Martin D. ;
Schubert, Ulrich S. .
ADVANCED MATERIALS, 2012, 24 (48) :6397-6409
[9]   Solvent effect on the kinetics of lithium ion intercalation into LiCoO2 [J].
Levin, Eduard E. ;
Vassiliev, Sergey Yu. ;
Nikitina, Victoria A. .
ELECTROCHIMICA ACTA, 2017, 228 :114-124
[10]   Heavily n-Dopable π-Conjugated Redox Polymers with Ultrafast Energy Storage Capability [J].
Liang, Yanliang ;
Chen, Zhihua ;
Jing, Yan ;
Rong, Yaoguang ;
Facchetti, Antonio ;
Yao, Yan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (15) :4956-4959