Assessing Cardiac Reprogramming using High Content Imaging Analysis

被引:3
作者
Zhang, Zhentao [1 ,2 ,3 ]
Nam, Young-Jae [1 ,2 ,3 ]
机构
[1] Vanderbilt Univ, Med Ctr, Dept Med, Div Cardiovasc Med, Nashville, TN 37235 USA
[2] Vanderbilt Univ, Dept Cell & Dev Biol, Nashville, TN 37235 USA
[3] Vanderbilt Univ, Vanderbilt Ctr Stem Cell Biol, Nashville, TN 37235 USA
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2020年 / 164期
关键词
FIBROBLASTS; CARDIOMYOCYTES; MEF2C;
D O I
10.3791/61859
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The goal of this protocol is to describe a method for quantifying induced cardiomyocyte-like cells (iCMs), which are directly reprogrammed in vitro by a reprogramming technique. Cardiac reprogramming provides a strategy to generate new cardiomyocytes. By introducing core cardiogenic transcription factors into fibroblasts; fibroblasts can be converted to iCMs without transition through the pluripotent stem cell state. However, the conversion rate of fibroblasts to iCMs still remains low. Accordingly, there have been numerous additional approaches to enhance cardiac reprogramming efficiency. Most of these studies assessed cardiac reprogramming efficiency using flow cytometry, while at the same time performed immunocytochemistry to visualize iCMs. Thus, at least two separate sets of reprogramming experiments are required to demonstrate the success of iCM reprogramming. In contrast, automated high content imaging analysis will provide both quantification and qualification of iCM reprogramming with a relatively small number of cells. With this method, it is possible to directly assess the quantity and quality of iCMs with a single reprogramming experiment. This approach will be able to facilitate future cardiac reprogramming studies that require large-scale reprogramming experiments such as screening genetic or pharmacological factors for enhancing reprogramming efficiency. In addition, the application of high content imaging analysis protocol is not limited to cardiac reprogramming. It can be applied to reprogramming of other cell lineages as well as any immunostaining experiments which need both quantification and visualization of immunostained cells.
引用
收藏
页数:10
相关论文
共 19 条
[1]   Notch Inhibition Enhances Cardiac Reprogramming by Increasing MEF2C Transcriptional Activity [J].
Abad, Maria ;
Hashimoto, Hisayuki ;
Zhou, Huanyu ;
Morales, Maria Gabriela ;
Chen, Beibei ;
Bassel-Duby, Rhonda ;
Olson, Eric N. .
STEM CELL REPORTS, 2017, 8 (03) :548-560
[2]   Optimization of direct fibroblast reprogramming to cardiomyocytes using calcium activity as a functional measure of success [J].
Addis, Russell C. ;
Ifkovits, Jamie L. ;
Pinto, Filipa ;
Kellam, Lori D. ;
Esteso, Paul ;
Rentschler, Stacey ;
Christoforou, Nicolas ;
Epstein, Jonathan A. ;
Gearhart, John D. .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2013, 60 :97-106
[3]   Direct Reprogramming of Fibroblasts into Functional Cardiomyocytes by Defined Factors [J].
Ieda, Masaki ;
Fu, Ji-Dong ;
Delgado-Olguin, Paul ;
Vedantham, Vasanth ;
Hayashi, Yohei ;
Bruneau, Benoit G. ;
Srivastava, Deepak .
CELL, 2010, 142 (03) :375-386
[4]   Inhibition of TGFβ Signaling Increases Direct Conversion of Fibroblasts to Induced Cardiomyocytes [J].
Ifkovits, Jamie L. ;
Addis, Russell C. ;
Epstein, Jonathan A. ;
Gearhart, John D. .
PLOS ONE, 2014, 9 (02)
[5]   Titin visualization in real time reveals an unexpected level of mobility within and between sarcomeres [J].
Lopes, Katharina da Silva ;
Pietas, Agnieszka ;
Radke, Michael H. ;
Gotthardt, Michael .
JOURNAL OF CELL BIOLOGY, 2011, 193 (04) :785-798
[6]   Role of cyclooxygenase-2-mediated prostaglandin E2-prostaglandin E receptor 4 signaling in cardiac reprogramming [J].
Muraoka, Naoto ;
Nara, Kaori ;
Tamura, Fumiya ;
Kojima, Hidenori ;
Yamakawa, Hiroyuki ;
Sadahiro, Taketaro ;
Miyamoto, Kazutaka ;
Isomi, Mari ;
Haginiwa, Sho ;
Tani, Hidenori ;
Kurotsu, Shota ;
Osakabe, Rina ;
Torii, Satoru ;
Shimizu, Shigeomi ;
Okano, Hideyuki ;
Sugimoto, Yukihiko ;
Fukuda, Keiichi ;
Ieda, Masaki .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures [J].
Muraoka, Naoto ;
Yamakawa, Hiroyuki ;
Miyamoto, Kazutaka ;
Sadahiro, Taketaro ;
Umei, Tomohiko ;
Isomi, Mari ;
Nakashima, Hanae ;
Akiyama, Mizuha ;
Wada, Rie ;
Inagawa, Kohei ;
Nishiyama, Takahiko ;
Kaneda, Ruri ;
Fukuda, Toru ;
Takeda, Shu ;
Tohyama, Shugo ;
Hashimoto, Hisayuki ;
Kawamura, Yoshifumi ;
Goshima, Naoki ;
Aeba, Ryo ;
Yamagishi, Hiroyuki ;
Fukuda, Keiichi ;
Ieda, Masaki .
EMBO JOURNAL, 2014, 33 (14) :1565-1581
[8]   Induction of diverse cardiac cell types by reprogramming fibroblasts with cardiac transcription factors [J].
Nam, Young-Jae ;
Lubczyk, Christina ;
Bhakta, Minoti ;
Zang, Tong ;
Fernandez-Perez, Antonio ;
McAnally, John ;
Bassel-Duby, Rhonda ;
Olson, Eric N. ;
Munshi, Nikhil V. .
DEVELOPMENT, 2014, 141 (22) :4267-4278
[9]   A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells [J].
Protze, Stephanie ;
Khattak, Shahryar ;
Poulet, Claire ;
Lindemann, Dirk ;
Tanaka, Elly M. ;
Ravens, Ursula .
JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2012, 53 (03) :323-332
[10]   Heart repair by reprogramming non-myocytes with cardiac transcription factors [J].
Song, Kunhua ;
Nam, Young-Jae ;
Luo, Xiang ;
Qi, Xiaoxia ;
Tan, Wei ;
Huang, Guo N. ;
Acharya, Asha ;
Smith, Christopher L. ;
Tallquist, Michelle D. ;
Neilson, Eric G. ;
Hill, Joseph A. ;
Bassel-Duby, Rhonda ;
Olson, Eric N. .
NATURE, 2012, 485 (7400) :599-+