PRECONDITIONED LOCALLY HARMONIC RESIDUAL METHOD FOR COMPUTING INTERIOR EIGENPAIRS OF CERTAIN CLASSES OF HERMITIAN MATRICES

被引:10
|
作者
Vecharynski, Eugene [1 ]
Knyazev, Andrew [2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[2] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
关键词
eigenvalue; eigenvector; Hermitian; absolute value preconditioning; linear systems; EIGENVALUE PROBLEMS; ALGORITHM; SYSTEMS; EIGENSOLVER; EQUATIONS;
D O I
10.1137/14098048X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a preconditioned locally harmonic residual (PLHR) method for computing several interior eigenpairs of a generalized Hermitian eigenvalue problem, without traditional spectral transformations, matrix factorizations, or inversions. PLHR is based on a short-term recurrence, easily extended to a block form, computing eigenpairs simultaneously. PLHR can take advantage of Hermitian positive definite preconditioning, e.g., based on an approximate inverse of an absolute value of a shifted matrix, introduced in [E. Vecharynski and A. V. Knyazev, SIAM J. Sci. Comput., 35 (2013), pp. A696-A718]. Our numerical experiments demonstrate that PLHR is efficient and robust for certain classes of large-scale interior eigenvalue problems, involving Laplacian and Hamiltonian operators, especially if memory requirements are tight.
引用
收藏
页码:S3 / S29
页数:27
相关论文
共 8 条