共 8 条
PRECONDITIONED LOCALLY HARMONIC RESIDUAL METHOD FOR COMPUTING INTERIOR EIGENPAIRS OF CERTAIN CLASSES OF HERMITIAN MATRICES
被引:10
|作者:
Vecharynski, Eugene
[1
]
Knyazev, Andrew
[2
]
机构:
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[2] Mitsubishi Elect Res Labs, Cambridge, MA 02139 USA
关键词:
eigenvalue;
eigenvector;
Hermitian;
absolute value preconditioning;
linear systems;
EIGENVALUE PROBLEMS;
ALGORITHM;
SYSTEMS;
EIGENSOLVER;
EQUATIONS;
D O I:
10.1137/14098048X
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We propose a preconditioned locally harmonic residual (PLHR) method for computing several interior eigenpairs of a generalized Hermitian eigenvalue problem, without traditional spectral transformations, matrix factorizations, or inversions. PLHR is based on a short-term recurrence, easily extended to a block form, computing eigenpairs simultaneously. PLHR can take advantage of Hermitian positive definite preconditioning, e.g., based on an approximate inverse of an absolute value of a shifted matrix, introduced in [E. Vecharynski and A. V. Knyazev, SIAM J. Sci. Comput., 35 (2013), pp. A696-A718]. Our numerical experiments demonstrate that PLHR is efficient and robust for certain classes of large-scale interior eigenvalue problems, involving Laplacian and Hamiltonian operators, especially if memory requirements are tight.
引用
收藏
页码:S3 / S29
页数:27
相关论文